Inhibitory interneurons are pivotal components of cortical circuits. Beyond providing inhibition, they have been proposed to coordinate the firing of excitatory neurons within cell assemblies. While the roles of specific interneuron subtypes have been extensively studied, their influence on pyramidal cell synchrony in vivo remains elusive.
View Article and Find Full Text PDFThe hippocampus plays a critical role in episodic memory: the sequential representation of visited places and experienced events. This function is mirrored by hippocampal activity that self organizes into sequences of neuronal activation that integrate spatiotemporal information. What are the underlying mechanisms of such integration is still unknown.
View Article and Find Full Text PDFThe chained activation of neuronal assemblies is thought to support major cognitive processes, including memory. In the hippocampus, this is observed during population bursts often associated with sharp-wave ripples, in the form of an ordered reactivation of neurons. However, the organization and lifetime of these assemblies remain unknown.
View Article and Find Full Text PDFEpilepsy is characterized by recurrent seizures and brief, synchronous bursts called interictal spikes that are present in-between seizures and observed as transient events in EEG signals. While GABAergic transmission is known to play an important role in shaping healthy brain activity, the role of inhibition in these pathological epileptic dynamics remains unclear. Examining the microcircuits that participate in interictal spikes is thus an important first step towards addressing this issue, as the function of these transient synchronizations in either promoting or prohibiting seizures is currently under debate.
View Article and Find Full Text PDFFront Neural Circuits
February 2016
Memory formation is associated with the generation of transiently stable neuronal assemblies. In hippocampal networks, such groups of functionally coupled neurons express highly ordered spatiotemporal activity patterns which are coordinated by local network oscillations. One of these patterns, sharp wave-ripple complexes (SPW-R), repetitively activates previously established groups of memory-encoding neurons, thereby supporting memory consolidation.
View Article and Find Full Text PDFThe hippocampus expresses a variety of highly organized network states which bind its individual neurons into collective modes of activity. These patterns go along with characteristic oscillations of extracellular potential known as theta, gamma, and ripple oscillations. Such network oscillations share some important features throughout the entire central nervous system of higher animals: they are restricted to a defined behavioral state, they are mostly generated by subthreshold synaptic activity, and they entrain active neurons to fire action potentials at strictly defined phases of the oscillation cycle, thereby providing a unifying 'zeitgeber' for coordinated multineuronal activity.
View Article and Find Full Text PDFHippocampal activity is characterized by the coordinated firing of a subset of neurons. Such neuronal ensembles can either be driven by external stimuli to form new memory traces or be reactivated by intrinsic mechanisms to reactivate and consolidate old memories. Hippocampal network oscillations orchestrate this coherent activity.
View Article and Find Full Text PDFThe mammalian hippocampus expresses several types of network oscillations which entrain neurons into transiently stable assemblies. These groups of co-active neurons are believed to support the formation, consolidation and recall of context-dependent memories. Formation of new assemblies occurs during theta- and gamma-oscillations under conditions of high cholinergic activity.
View Article and Find Full Text PDFCognitive and behavioral functions depend on the activation of stable neuronal assemblies, i.e. distributed groups of co-active neurons within neuronal networks.
View Article and Find Full Text PDFCognitive functions go along with complex patterns of distributed activity in neuronal networks, thereby forming assemblies of selected neurons. To support memory processes, such assemblies have to be stabilized and reactivated in a highly reproducible way. The rodent hippocampus provides a well studied model system for network mechanisms underlying spatial memory formation.
View Article and Find Full Text PDF