Publications by authors named "Susanne Nystrom"

Nerve Growth Factor (NGF) is a signalling molecule for pain and inflammation. NGF is increased in synovial fluid from osteoarthritic humans and animals, compared to healthy controls. Monoclonal antibody therapy directed against NGF has been approved to treat pain in osteoarthritic dogs but despite many years of trialling, therapy has not been approved for human use.

View Article and Find Full Text PDF

Blood levels of cardiac troponins (cTn) and myoglobin are analysed when myocardial infarction (MI) is suspected. Here we describe a novel clearance mechanism for muscle proteins by muscle cells. The complete plasma clearance profile of cTn and myoglobin was followed in rats after intravenous or intermuscular injections and analysed by PET and fluorescence microscopy of muscle biopsies and muscle cells.

View Article and Find Full Text PDF

Cardiac-specific troponins (cTn), troponin T (cTnT) and troponin I (cTnI) are diagnostic biomarkers when myocardial infarction is suspected. Despite its clinical importance it is still not known how cTn is cleared once it is released from damaged cardiac cells. The aim of this study was to examine the clearance of cTn in the rat.

View Article and Find Full Text PDF

Background: Although cardiac troponin I (cTnI) and troponin T (cTnT) form a complex in the human myocardium and bind to thin filaments in the sarcomere, cTnI often reaches higher concentrations and returns to normal concentrations faster than cTnT in patients with acute myocardial infarction (MI).

Methods: We compared the overall clearance of cTnT and cTnI in rats and in patients with heart failure and examined the release of cTnT and cTnI from damaged human cardiac tissue in vitro.

Results: Ground rat heart tissue was injected into the quadriceps muscle in rats to simulate myocardial damage with a defined onset.

View Article and Find Full Text PDF

A surface plasmon resonance (SPR) biosensor-based assay for membrane-embedded full-length BACE1 (β-site amyloid precursor protein cleaving enzyme 1), a drug target for Alzheimer's disease, has been developed. It allows the analysis of interactions with the protein in its natural lipid membrane environment. The enzyme was captured via an antibody recognizing a C-terminal His6 tag, after which a lipid membrane was reconstituted on the chip using a brain lipid extract.

View Article and Find Full Text PDF

BACE-1 is one of the aspartic proteases involved in the cleavage of beta amyloid peptide, an initial step in the formation of amyloid plaques whose toxicity induces neuron death in Alzheimer's disease patients. One of the central issues in the search of novel BACE-1 inhibitors is the optimum pH for the binding of inhibitors to the enzyme. It is known that the enzyme has optimal catalytic activity at acidic pH, while cell active inhibitors may bind optimally at higher pH.

View Article and Find Full Text PDF

Background: Etoposide is a cancer drug that induces strand breaks in cellular DNA by inhibiting topoisomerase II (topoII) religation of cleaved DNA molecules. Although DNA cleavage by topoisomerase II always produces topoisomerase II-linked DNA double-strand breaks (DSBs), the action of etoposide also results in single-strand breaks (SSBs), since religation of the two strands are independently inhibited by etoposide. In addition, recent studies indicate that topoisomerase II-linked DSBs remain undetected unless topoisomerase II is removed to produce free DSBs.

View Article and Find Full Text PDF

A human matrix metalloproteinase (MMP) hydroxamic acid inhibitor (CGS27023A) was cross-docked into 15 MMP-12, MMP-13, MMP-9, and MMP-1 cocrystal structures. The aim was to validate a fast protocol for ligand binding conformation elucidation and to probe the feasibility of using inhibitor-protein NMR contacts to dock an inhibitor into related MMP crystal structures. Such an approach avoids full NMR structure elucidation, saving both spectrometer- and analysis time.

View Article and Find Full Text PDF
Article Synopsis
  • A variety of BACE-1 inhibitors that work at low nanomolar levels have been developed, featuring a statine-based core structure.
  • These inhibitors include phenyloxymethyl and benzyloxymethyl groups in the P1 position to enhance effectiveness.
  • The new modifications in the P1 position enable easier investigation of the S1 binding pocket of BACE-1, resulting in highly effective inhibitors.
View Article and Find Full Text PDF

Small inhibitors of matrix metalloproteinase 12 (MMP-12) have been identified with a biosensor-based screening strategy and a specifically designed fragment library. The interaction between fragments and three variants of the target and a reference protein with an active-site zinc ion was measured continuously by surface plasmon resonance. The developed experimental design overcame the inherent instability of MMP-12 and allowed the identification of fragments that interacted specifically with the active-site of MMP-12 but not with the reference protein.

View Article and Find Full Text PDF

The protein kinase ataxia telangiectasia mutated (ATM) is activated when cells are exposed to ionizing radiation (IR). It has been assumed that ATM is specifically activated by the few induced DNA double strand breaks (DSBs), although little direct evidence for this assumption has been presented. DSBs constitute only a few percent of the IR-induced DNA damage, whereas the more frequent single strand DNA breaks (SSBs) and base damage account for over 98% of the overall DNA damage.

View Article and Find Full Text PDF

The aim of this study was to recombinantly produce and purify Helicobacter pylori adhesin A (HpaA) from Escherichia coli and compare it to purified native H. pylori HpaA, for potential use as a vaccine antigen. The hpaA gene was cloned from H.

View Article and Find Full Text PDF

Neuropeptide Y (NPY), a 36-aa peptide, is widely distributed in the brain and peripheral tissues. Whereas physiological roles of NPY as a hormoneneurotransmitter have been well studied, little is known about its other peripheral functions. Here, we report that NPY acts as a potent angiogenic factor in vivo using the mouse corneal micropocket and the chick chorioallantoic membrane (CAM) assays.

View Article and Find Full Text PDF

Neuropeptide Y (NPY) is a 36 amino acid peptide well known for its role in regulating food intake and energy homeostasis. It has previously been shown that the NPY Y2 receptor is required for a full biological response to leptin in the central nervous system. We have examined the impact of this receptor on plasma levels of lipid and cholesterol in wild type and obese (ob/ob) mice.

View Article and Find Full Text PDF

mRNA encoding the human NPY Y1 and NPY Y2 receptors were detected in cerebral, meningeal, and coronary arteries using reverse transcriptase-polymerase chain reaction (RT-PCR). In addition, the trigeminal and superior cervical ganglia were positive for both receptors. In some arteries and in SK-N-MC cells only mRNA encoding the NPY Y1 was detected.

View Article and Find Full Text PDF

The Neuropeptide Y (NPY) family of neuropeptides exert their function through a family of heptahelical G-protein coupled receptors regulating essential physiological processes. A 97 base pair intron (intron IV) intervenes the coding sequence of the human NPY Y1 receptor (hY1) gene and was found frequently retained at variable levels in poly A+ mRNA isolated from multiple human tissues. When included in hY1 expression vectors, either in its natural position or 5' of the hY1 cDNA, intron IV mediated a significant increase of both hY1 mRNA and corresponding functional receptor protein in transfected mammalian cells, implying an in vivo regulatory function of the endogenous intron.

View Article and Find Full Text PDF