Neurotrophins are secreted proteins that control survival, differentiation, and synaptic plasticity. While mature neurotrophins regulate these functions via tyrosine kinase signaling (Trk), uncleaved pro-neurotrophins bind preferentially to the p75 neurotrophin receptor (p75NTR) and often exert opposite effects to those of mature neurotrophins. In the amygdala, brain-derived neurotrophic factor (BDNF) enables long-term potentiation as well as fear and fear extinction learning.
View Article and Find Full Text PDFThe amygdala is a central hub for fear learning assessed by Pavlovian fear conditioning. Indeed, the prevailing hypothesis that learning and memory are mediated by changes in synaptic strength was shown most convincingly at thalamic and cortical afferents to the lateral amygdala. The neurotrophin brain-derived neurotrophic factor (BDNF) is known to regulate synaptic plasticity and memory formation in many areas of the mammalian brain including the amygdala, where BDNF signalling via tropomyosin-related kinase B (TrkB) receptors is prominently involved in fear learning.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) has previously been shown to play an important role in glutamatergic synaptic plasticity in the amygdala, correlating with cued fear learning. While glutamatergic neurotransmission is facilitated by BDNF signaling in the amygdala, its mechanism of action at inhibitory synapses in this nucleus is far less understood. We therefore analyzed the impact of chronic BDNF depletion on GABA-mediated synaptic transmission in BDNF heterozygous knockout mice (BDNF).
View Article and Find Full Text PDFFunctional neuroanatomy of Pavlovian fear has identified neuronal circuits and synapses associating conditioned stimuli with aversive events. Hebbian plasticity within these networks requires additional reinforcement to store particularly salient experiences into long-term memory. Here we have identified a circuit that reciprocally connects the ventral periaqueductal gray and dorsal raphe region with the central amygdala and that gates fear learning.
View Article and Find Full Text PDFCholinergic neuromodulation in the hippocampus controls the salience of background context memory acquired in the presence of elemental stimuli predicting an aversive reinforcement. With pharmacogenetic inhibition we here demonstrate that hilar perforant path-associated (HIPP) cells of the dentate gyrus mediate the devaluation of background context memory during Pavlovian fear conditioning. The salience adjustment is sensitive to reduction of hilar neuropeptide Y (NPY) expression via dominant negative CREB expression in HIPP cells and to acute blockage of NPY-Y1 receptors in the dentate gyrus during conditioning.
View Article and Find Full Text PDFAims: To report the three-year clinical outcome of the Axxess™ stent, a nitinol self-expanding Biolimus A9™ eluting stent for treatment of de novo coronary bifurcation lesions. The Axxess stent is a new-generation drug-eluting stent that might offer advantages in terms of improved clinical outcomes and safety profile in bifurcation lesion stenting.
Methods And Results: The DIVERGE study was a multicentre, prospective, single-arm trial.
The mechanisms underlying spontaneous burst activity (SBA), appearing in networks of embryonic cortical neurons at the end of the first week in vitro, remain elusive. Here we investigated the contribution of the hyperpolarization-activated cation current (I(h)) to SBA in cortical cultures of GAD67-GFP mice. I(h) current could be detected in GFP-positive large GABAergic interneurons (L-INs) and glutamatergic principal neurons (PNs) as early as DIV 5.
View Article and Find Full Text PDFAm Heart J
November 2011
Background: Biolimus-eluting stents (BESs) with a biodegradable polymer in abluminal coating achieve more complete coverage at 9 months compared with sirolimus-eluting stents (SESs) with a durable polymer, as assessed by optical coherence tomography (OCT). Whether this advantage persists or augments after complete resorption of the polymer (>12 months) is unknown.
Methods: The LEADERS trial compared the performance of BES with that of SES.
The neuropeptide S (NPS) receptor system modulates neuronal circuit activity in the amygdala in conjunction with fear, anxiety and the expression and extinction of previously acquired fear memories. Using in vitro brain slice preparations of transgenic GAD67-GFP (Δneo) mice, we investigated the effects of NPS on neural activity in the lateral amygdala as a key region for the formation and extinction of fear memories. We are able to demonstrate that NPS augments excitatory glutamatergic synaptic input onto both projection neurons and interneurons of the lateral amygdala, resulting in enhanced spike activity of both types of cells.
View Article and Find Full Text PDFNeuropeptide S (NPS) and its receptor are thought to define a set of specific brain circuits involved in fear and anxiety. Here we provide evidence for a novel, NPS-responsive circuit that shapes neural activity in the mouse basolateral amygdala (BLA) via the endopiriform nucleus (EPN). Using slice preparations, we demonstrate that NPS directly activates an inward current in 20% of EPN neurons and evokes an increase of glutamatergic excitation in this nucleus.
View Article and Find Full Text PDFNetworks of cortical neurons in vitro spontaneously develop synchronous oscillatory electrical activity at around the second week in culture. However, the underlying mechanisms and in particular the role of GABAergic interneurons in initiation and synchronization of oscillatory activity in developing cortical networks remain elusive. Here, we examined the intrinsic properties and the development of GABAergic and glutamatergic input onto presumed projection neurons (PNs) and large interneurons (L-INs) in cortical cultures of GAD67-GFP mice.
View Article and Find Full Text PDFProjection neurons of mouse basolateral amygdala responded to CCK with an inward current at a holding potential of -70 mV. This response was mediated by CCK2 receptors as indicated by agonist and antagonist effectiveness, and conveyed via G-proteins of the G(q/11) family as it was abolished in gene knockout mice. Maximal current amplitude was insensitive to extracellular potassium, cesium, and calcium ions, respectively, whereas amplitude and reversal potential critically depended upon extracellular sodium concentration.
View Article and Find Full Text PDFNeurons in the rat lateral amygdala in situ were classified based upon electrophysiological and molecular parameters, as studied by patch-clamp, single-cell RT-PCR and unsupervised cluster analyses. Projection neurons (class I) were characterized by low firing rates, frequency adaptation and expression of the vesicular glutamate transporter (VGLUT1). Two classes were distinguished based upon electrotonic properties and the presence (IB) or absence (IA) of vasointestinal peptide (VIP).
View Article and Find Full Text PDFThe effects of somatostatin in the rat lateral amygdala (LA) in vitro were investigated through whole cell recording techniques. Somatostatin induced an inwardly rectifying K+ current in approximately 98% of LA projection neurons. Half-maximal effects were obtained by 189 nM somatostatin.
View Article and Find Full Text PDFA peptide termed nociceptin/orphanin FQ (N/OFQ) was recently identified as an endogenous agonist for the opioid receptor-like receptor currently specified as NOP receptor. Despite many structural homologies to the opioid system, the NOP receptor shows low-affinity binding to selective opioid agonists or antagonists. Vice versa, N/OFQ selectively activates the NOP receptor but not any opioid receptor subtype.
View Article and Find Full Text PDFPostsynaptic and presynaptic effects of nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of the opioid-like orphan receptor, were investigated in an in vitro slice preparation of the rat thalamic reticular nucleus (NRT) and ventrobasal complex (VB). In NRT as well as VB, all tested neurons developed an outward current on application of 1 micrometer N/OFQ. Basic properties of the N/OFQ-induced current included inward rectification, dependence on extracellular K(+), reduction by 100 micrometer Ba(+), antagonistic effect of [Nphe(1)]nociceptin(1-13)NH(2), and sensitivity to internal GDP-beta-S.
View Article and Find Full Text PDF