Publications by authors named "Susanne Martens"

Mixed Si/Ge hydrides SixGeyHz are valuable precursors for the deposition of binary Si-Ge alloys. This work describes the synthesis and full characterization of the previously unknown germaisotetrasilane Ph3GeSi(SiH3)3 (2) on a multigram scale from the reaction of the lithium silanide LiSi(SiH3)3 with Ph3GeCl. The stability of the Si-Ge bond in 2 versus electrophiles and nucleophiles has been investigated with the primary aim of developing new approaches to mixed sila-H-germanes (H3Ge)xSi(SiH3)4-x.

View Article and Find Full Text PDF

The formation of on-surface coordination polymers is controlled by the interplay of chemical reactivity and structure of the building blocks, as well as by the orientating role of the substrate registry. Beyond the predetermined patterns of structural assembly, the chemical reactivity of the reactants involved may provide alternative pathways in their aggregation. Organic molecules, which are transformed in a surface reaction, may be subsequently trapped via coordination of homo- or heterometal adatoms, which may also play a role in the molecular transformation.

View Article and Find Full Text PDF

We present a new class of on-surface covalent reactions, formed between diborylene-3,4,9,10-tetraaminoperylene and trimesic acid on Cu(111), which gives rise to a porous 2D-'sponge'. This aperiodic network allowed the investigation of the dependence of electron confinement effects upon pore size, shape and even in partial confinement.

View Article and Find Full Text PDF

Background: The complex process of development of the pituitary gland is regulated by a number of signalling molecules and transcription factors. Mutations in these factors have been identified in rare cases of congenital hypopituitarism but for most subjects with combined pituitary hormone deficiency (CPHD) genetic causes are unknown. Bone morphogenetic proteins (BMPs) affect induction and growth of the pituitary primordium and thus represent plausible candidates for mutational screening of patients with CPHD.

View Article and Find Full Text PDF

Chiral recognition as well as chirality transfer in supramolecular self-assembly and on-surface coordination is studied for the enantiopure 6,13-dicyano[7]helicene building block. It is remarkable that, with this helical molecule, both H-bonded chains and metal-coordinated chains can be formed on the same substrate, thereby allowing for a direct comparison of the chain bonding motifs and their effects on the self-assembly in experiment and theory. Conformational flexure and both adsorbate/adsorbent and intermolecular interactions can be identified as factors influencing the chiral recognition at the binding site.

View Article and Find Full Text PDF

Core substitution of tetraazaperopyrenes (TAPPs) has been achieved, and with it, considerable variation of their photo- and redox-chemical properties. Through Suzuki cross coupling starting from the fourfold core-brominated tetraazaperopyrene, aryl-substituted TAPPs were synthesized, which displayed very high fluorescence quantum yields (up to 100 %) in solution. Besides the Suzuki reactions, Stille and Sonogashira cross-couplings were also found to be suitable methods for core derivatization, as demonstrated in the syntheses of alkynyl-substituted tetraazaperopyrene congeners.

View Article and Find Full Text PDF

A series of new tetraazapyrene (TAPy) derivatives has been synthesized by reducing 1,4,5,8-tetranitronaphthalene to its corresponding tin salt (I) and reacting it with perfluorinated alkyl or aryl anhydrides. The resulting 2,7-disubstituted TAPy molecules and the known parent compound 1,3,6,8-tetraazapyrene (II) have been further derivatized by core chlorination and bromination. The brominated compounds served as starting materials for Suzuki cross-coupling reactions with electron-poor arylboronic acids.

View Article and Find Full Text PDF

A range of 2,9-perfluoroalkyl-substituted tetraazaperopyrene (TAPP) derivatives (1-5) was synthesised by reacting 4,9-diamino-3,10-perylenequinone diimine (DPDI) with the corresponding carboxylic acid chloride or anhydride in the presence of a base. The reaction of compounds 1-4 with dichloroisocyanuric acid (DIC) in concentrated sulphuric acid resulted in the fourfold substitution of the tetraazaperopyrene core, yielding the 2,9-bisperfluoroalkyl-4,7,11,14-tetrachloro-1,3,8,10-tetraazaperopyrenes 6-9, respectively. The optical and electrochemical data demonstrate the drastic influence of the core substitution on the properties.

View Article and Find Full Text PDF

A series of 2,9-bisaryl-1,3,8,10-tetraazaperopyrene (TAPP) derivatives has been synthesized by reacting 4,9-diamino-3,10-perylenequinone diimine with a large excess of the corresponding benzoyl chloride in refluxing nitrobenzene. Among all derivatives only ortho-substituted phenyl congeners were sufficiently soluble for studying solutions of defined concentration in organic solvents. The molecular structures of the crystallized compounds, determined by X-ray diffraction of four derivatives, are determined by the planar tetraazaperopyrene core and the interplanar angle of the phenyl rings, which depends on the size of the ortho substituent (40-70°).

View Article and Find Full Text PDF

The structural chemistry and reactivity of 1,3,8,10-tetraazaperopyrene (TAPP) on Cu(111) under ultra-high-vacuum (UHV) conditions has been studied by a combination of experimental techniques (scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy, XPS) and DFT calculations. Depending on the deposition conditions, TAPP forms three main assemblies, which result from initial submonolayer coverages based on different intermolecular interactions: a close-packed assembly similar to a projection of the bulk structure of TAPP, in which the molecules interact mainly through van der Waals (vDW) forces and weak hydrogen bonds; a porous copper surface coordination network; and covalently linked molecular chains. The Cu substrate is of crucial importance in determining the structures of the aggregates and available reaction channels on the surface, both in the formation of the porous network for which it provides the Cu atoms for surface metal coordination and in the covalent coupling of the TAPP molecules at elevated temperature.

View Article and Find Full Text PDF

Protein kinase D (PKD) regulates the fission of vesicles originating from the trans-Golgi network. We show that phosphatidylinositol 4-kinase IIIbeta (PI4KIIIbeta) - a key player in the structure and function of the Golgi complex - is a physiological substrate of PKD. Of the three PKD isoforms, only PKD1 and PKD2 phosphorylated PI4KIIIbeta at a motif that is highly conserved from yeast to humans.

View Article and Find Full Text PDF