Publications by authors named "Susanne L Tranguch"

There is growing appreciation that resident glial cells can initiate and/or regulate inflammation following trauma or infection in the central nervous system (CNS). We have previously demonstrated the ability of microglia and astrocytes, resident glial cells of the CNS, to respond to bacterial pathogens by rapid production of inflammatory mediators. However, inflammation within the brain parenchyma is notably absent during some chronic bacterial infections in humans and nonhuman primates.

View Article and Find Full Text PDF

Osteoblasts produce an array of immune molecules following bacterial challenge that could recruit leukocytes to sites of infection and promote inflammation during bone diseases, such as osteomyelitis. Recent studies from our laboratory have shed light on the mechanisms by which this cell type can perceive and respond to bacteria by demonstrating the functional expression of members of the Toll-like family of cell surface pattern recognition receptors by osteoblasts. However, we have shown that bacterial components fail to elicit immune responses comparable with those seen following challenge with the intracellular pathogens salmonellae and Staphylococcus aureus.

View Article and Find Full Text PDF

Staphylococcus aureus is the single most common cause of osteomyelitis in humans. Incidences of osteomyelitis caused by S. aureus have increased dramatically in recent years, in part due to the appearance of community-acquired antibiotic resistant strains.

View Article and Find Full Text PDF

Murine osteoblasts express Toll-like receptor 5 (TLR5), and this expression is upregulated following exposure to bacteria or to the TLR5 agonist, flagellin. Importantly, flagellin activates transcriptional regulators and elicits proinflammatory cytokine production, suggesting TLR5 functionality. TLR5 may represent an important mechanism underlying the recognition of bacterial pathogens by osteoblasts during bone infections.

View Article and Find Full Text PDF

It has become apparent that astrocytes may be important contributors to inflammatory immune responses within the brain in response to microbial challenges. To date, the mechanisms that underlie activation of this major glial cell type by such challenges have not been investigated. In the present study, we present evidence for members of a recently discovered family of receptors for highly conserved microbial components, the Toll-like receptors (TLRs), in isolated cultures of primary murine astrocytes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5dcpgss9hr2ncdjkd2pcofapo0u01l5n): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once