Three monoclonal antibodies directed against specific forms of the amyloid-β (Aβ) peptide have been granted accelerated or traditional approval by the FDA as treatments for Alzheimer disease, representing the first step towards bringing disease-modifying treatments for this disease into clinical practice. Here, we review the detection, underlying pathophysiological mechanisms and clinical implications of amyloid-related imaging abnormalities (ARIA), the most impactful adverse effect of anti-Aβ immunotherapy. ARIA appears as regions of oedema or effusions (ARIA-E) in brain parenchyma or sulci or as haemorrhagic lesions (ARIA-H) in the form of cerebral microbleeds, convexity subarachnoid haemorrhage, cortical superficial siderosis or intracerebral haemorrhage.
View Article and Find Full Text PDFSpontaneous intracerebral hemorrhage(ICH) represents a life-threatening form of stroke, marked by its impact on survival and quality of life. ICH can be categorized from monogenic disorders linked to causal germline variants in ICH-related genes to complex sporadic cases, highlighting the interaction among lifestyle factors, environmental influences, and genetic components in determining risk. Among sporadic ICH, the influence of these factors varies across ICH subtypes, evidenced by heritability rates of up to 73% for lobar ICH versus 34% for non-lobar ICH.
View Article and Find Full Text PDFBackground: White matter hyperintensities (WMHs) are frequently observed on magnetic resonance imaging (MRI) in patients with cerebral amyloid angiopathy (CAA). The neuropathological substrates that underlie WMHs in CAA are unclear, and it remains largely unexplored whether the different WMH distribution patterns associated with CAA (posterior confluent and subcortical multispot) reflect alternative pathophysiological mechanisms.
Methods And Results: We performed a combined in vivo MRI-ex vivo MRI-neuropathological study in patients with definite CAA.
White matter hyperintensities (WMHs) are commonly detected on T2-weighted magnetic resonance imaging (MRI) scans, occurring in both typical aging and Alzheimer's disease. Despite their frequent appearance and their association with cognitive decline, the molecular factors contributing to WMHs remain unclear. In this study, we investigated the transcriptomic profiles of two commonly affected brain regions with coincident AD pathology-frontal subcortical white matter (frontal-WM) and occipital subcortical white matter (occipital-WM)-and compared with age-matched healthy controls.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
November 2024
Enlarged perivascular spaces (EPVS) are common in cerebral small vessel disease (CSVD) and have been identified as a marker of dysfunctional brain clearance. However, it remains unknown if the enlargement occurs predominantly around arteries or veins. We combined ultra-high-resolution MRI and histopathology to investigate the spatial relationship of veins and arteries with EPVS within the basal ganglia (BG).
View Article and Find Full Text PDFThe brain's network of perivascular channels for clearance of excess fluids and waste plays a critical role in the pathogenesis of several neurodegenerative diseases including cerebral amyloid angiopathy (CAA). CAA is the main cause of hemorrhagic stroke in the elderly, the most common vascular comorbidity in Alzheimer's disease and also implicated in adverse events related to anti-amyloid immunotherapy. Remarkably, the mechanisms governing perivascular clearance of soluble amyloid β-a key culprit in CAA-from the brain to draining lymphatics and systemic circulation remains poorly understood.
View Article and Find Full Text PDFBrain arterioles are active, multicellular complexes whose diameters oscillate at ∼ 0.1 Hz. We assess the physiological impact and spatiotemporal dynamics of vaso-oscillations in the awake mouse.
View Article and Find Full Text PDFBackground: Cerebral amyloid angiopathy (CAA) is a cerebral small vessel disease in which amyloid-β accumulates in vessel walls. CAA is a leading cause of symptomatic lobar intracerebral hemorrhage and an important contributor to age-related cognitive decline. Recent work has suggested that vascular dysfunction may precede symptomatic stages of CAA, and that spontaneous slow oscillations in arteriolar diameter (termed vasomotion), important for amyloid-β clearance, may be impaired in CAA.
View Article and Find Full Text PDFBackground: Men with cerebral amyloid angiopathy (CAA) may have an earlier onset of intracerebral hemorrhage and a more hemorrhagic disease course compared to women. In this cohort study, we investigated sex differences in histopathological markers associated with amyloid-β burden and hemorrhage in cognitively impaired individuals and patients with CAA, using neuropathological data from two autopsy databases.
Methods: First, we investigated presence of parenchymal (Thal score) and vascular amyloid-β (CAA severity score) in cognitively impaired individuals from the National Alzheimer's Coordinating Center (NACC) neuropathology database.
Background: Evidence from animal studies suggests that minocycline may reduce lobar intracerebral hemorrhage (ICH) recurrence in cerebral amyloid angiopathy, possibly by inhibiting perivascular extracellular matrix degradation in cerebral small vessels. There is currently no evidence of its safety or efficacy in humans with cerebral amyloid angiopathy.
Methods And Results: To provide preliminary data to support future studies of minocycline's efficacy, the authors performed a retrospective single-center cohort study to assess the incidence of recurrent ICH in patients with an aggressive clinical course of probable cerebral amyloid angiopathy who had been prescribed minocycline off-label via shared decision-making.
Background: Cortical superficial siderosis (cSS) has recently emerged as one of the most important predictors of symptomatic intracerebral hemorrhage and is a risk factor for post-stroke dementia in cerebral amyloid angiopathy (CAA). However, it remains unknown whether cSS is just a marker of severe CAA pathology or may itself contribute to intracerebral hemorrhage risk and cognitive decline. cSS is a chronic manifestation of convexal subarachnoid hemorrhage and is neuropathologically characterized by iron deposits in the superficial cortical layers.
View Article and Find Full Text PDFObjective: A definite diagnosis of cerebral amyloid angiopathy (CAA), characterized by the accumulation of amyloid β in walls of cerebral small vessels, can only be obtained through pathological examination. A diagnosis of probable CAA during life relies on the presence of hemorrhagic markers, including lobar cerebral microbleeds (CMBs). The aim of this project was to study the histopathological correlates of lobar CMBs in false-positive CAA cases.
View Article and Find Full Text PDFCerebral small vessel disease (SVD) is common during ageing and can present as stroke, cognitive decline, neurobehavioural symptoms, or functional impairment. SVD frequently coexists with neurodegenerative disease, and can exacerbate cognitive and other symptoms and affect activities of daily living. Standards for Reporting Vascular Changes on Neuroimaging 1 (STRIVE-1) categorised and standardised the diverse features of SVD that are visible on structural MRI.
View Article and Find Full Text PDFCerebral amyloid angiopathy, which is defined by cerebrovascular deposition of amyloid β, is a common age-related small vessel pathology associated with intracerebral haemorrhage and cognitive impairment. Based on complementary lines of evidence from in vivo studies of individuals with hereditary, sporadic, and iatrogenic forms of cerebral amyloid angiopathy, histopathological analyses of affected brains, and experimental studies in transgenic mouse models, we present a framework and timeline for the progression of cerebral amyloid angiopathy from subclinical pathology to the clinical manifestation of the disease. Key stages that appear to evolve sequentially over two to three decades are (stage one) initial vascular amyloid deposition, (stage two) alteration of cerebrovascular physiology, (stage three) non-haemorrhagic brain injury, and (stage four) appearance of haemorrhagic brain lesions.
View Article and Find Full Text PDFBackground: Preservation of brain health has emerged as a leading public health priority for the aging world population. Advances in neurovascular biology have revealed an intricate relationship among brain cells, meninges, and the hematic and lymphatic vasculature (the neurovasculome) that is highly relevant to the maintenance of cognitive function. In this scientific statement, a multidisciplinary team of experts examines these advances, assesses their relevance to brain health and disease, identifies knowledge gaps, and provides future directions.
View Article and Find Full Text PDFBackground: We observed subarachnoid cerebrospinal fluid (CSF) hyperintensities at non-contrast 7-tesla (T) fluid-attenuated inversion recovery (FLAIR) MRI, frequently topographically associated with cortical superficial siderosis (cSS), in participants with cerebral amyloid angiopathy (CAA). To systemically evaluate these CSF hyperintensities we investigated their frequency and anatomical and temporal relationship with cSS on 7T and 3T MRI in hereditary Dutch-type CAA (D-CAA), sporadic CAA (sCAA), and non-CAA controls.
Methods: CAA participants were included from two prospective natural history studies and non-CAA controls from a 7T study in healthy females and females with ischemic stroke.
A leading cause of white matter (WM) injury in older individuals is cerebral small vessel disease (SVD). Cerebral SVD is the most prevalent vascular contributor to cognitive impairment and dementia. Therapeutic progress for cerebral SVD and other WM disorders depends on the development and validation of neuroimaging markers suitable as outcome measures in future interventional trials.
View Article and Find Full Text PDFSensory stimulation evokes a local, vasodilation-mediated blood flow increase to the activated brain region, which is referred to as functional hyperemia. Spontaneous vasomotion is a change in arteriolar diameter that occurs without sensory stimulation, at low frequency (∼0.1 Hz).
View Article and Find Full Text PDFHemorrhagic stroke is the deadliest form of stroke and includes the subtypes of intracerebral hemorrhage and subarachnoid hemorrhage. A common cause of hemorrhagic stroke in older individuals is cerebral amyloid angiopathy. Intracerebral hemorrhage and subarachnoid hemorrhage both lead to the rapid collection of blood in the central nervous system and generate inflammatory immune responses that involve both brain resident and infiltrating immune cells.
View Article and Find Full Text PDFBackground: Peak width of skeletonized mean diffusivity (PSMD) is a promising diffusion tensor imaging (DTI) marker that shows consistent and strong cognitive associations in the context of different cerebral small vessel diseases (cSVD).
Purpose: Investigate whether PSMD (1) is higher in patients with Cerebral Amyloid Angiopathy (CAA) than those with arteriolosclerosis; (2) can capture the anteroposterior distribution of CAA-related abnormalities; (3) shows similar neuroimaging and cognitive associations in comparison to other classical DTI markers, such as average mean diffusivity (MD) and fractional anisotropy (FA).
Materials And Methods: We analyzed cross-sectional neuroimaging and neuropsychological data from 90 non-demented memory-clinic subjects from a single center.