Publications by authors named "Susanne H Sokolow"

Species distribution models (SDMs) are increasingly popular tools for profiling disease risk in ecology, particularly for infectious diseases of public health importance that include an obligate non-human host in their transmission cycle. SDMs can create high-resolution maps of host distribution across geographical scales, reflecting baseline risk of disease. However, as SDM computational methods have rapidly expanded, there are many outstanding methodological questions.

View Article and Find Full Text PDF

Schistosomiasis is a neglected tropical disease caused by Schistosoma parasites. Schistosoma are obligate parasites of freshwater Biomphalaria and Bulinus snails, thus controlling snail populations is critical to reducing transmission risk. As snails are sensitive to environmental conditions, we expect their distribution is significantly impacted by global change.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how temperature affects schistosomiasis, a disease caused by schistosome parasites and their host snails, particularly in sub-Saharan Africa where the disease is common.
  • Previous models underestimated the effective temperature range for schistosomiasis transmission, prompting this research to analyze how temperature influences the parasites and snails involved.
  • The findings indicate that optimal transmission temperatures are higher than previously thought, suggesting that climate change may increase schistosomiasis risk in regions currently suitable for the disease.
View Article and Find Full Text PDF

The geographical range of schistosomiasis is affected by the ecology of schistosome parasites and their obligate host snails, including their response to temperature. Previous models predicted schistosomiasis' thermal optimum at 21.7 °C, which is not compatible with the temperature in sub-Saharan Africa (SSA) regions where schistosomiasis is hyperendemic.

View Article and Find Full Text PDF

Schistosomiasis is a neglected tropical disease caused by parasites. are obligate parasites of freshwater snails, so controlling snail populations is critical to reducing transmission risk. As snails are sensitive to environmental conditions, we expect their distribution is significantly impacted by global change.

View Article and Find Full Text PDF
Article Synopsis
  • Many low- and middle-income communities face interconnected challenges related to infectious diseases, food insecurity, and water access, which lack effective solutions.
  • A study in West Africa shows that agricultural development can inadvertently increase schistosomiasis by promoting the growth of invasive aquatic vegetation that hosts disease-carrying snails; however, removing this vegetation led to lower infection rates in schoolchildren and no long-term negative impact on water quality.
  • The removal process not only provided a cost-effective alternative for livestock feed but also helped return nutrients to agriculture while offering substantial public health benefits, creating a promising model for addressing poverty, disease, and environmental sustainability simultaneously.
View Article and Find Full Text PDF

While much progress has been achieved over the last decades, malaria surveillance and control remain a challenge in countries with limited health care access and resources. High-resolution predictions of malaria incidence using routine surveillance data could represent a powerful tool to health practitioners by targeting malaria control activities where and when they are most needed. Here, we investigate the predictors of spatio-temporal malaria dynamics in rural Madagascar, estimated from facility-based passive surveillance data.

View Article and Find Full Text PDF

Optimal control theory can be a useful tool to identify the best strategies for the management of infectious diseases. In most of the applications to disease control with ordinary differential equations, the objective functional to be optimized is formulated in monetary terms as the sum of intervention costs and the cost associated with the burden of disease. We present alternate formulations that express epidemiological outcomes via health metrics and reframe the problem to include features such as budget constraints and epidemiological targets.

View Article and Find Full Text PDF

Use of agrochemicals, including insecticides, is vital to food production and predicted to increase 2-5 fold by 2050. Previous studies have shown a positive association between agriculture and the human infectious disease schistosomiasis, which is problematic as this parasitic disease infects approximately 250 million people worldwide. Certain insecticides might runoff fields and be highly toxic to invertebrates, such as prawns in the genus Macrobrachium, that are biocontrol agents for snails that transmit the parasites causing schistosomiasis.

View Article and Find Full Text PDF

Background: Billions of people living in poverty are at risk of environmentally mediated infectious diseases-that is, pathogens with environmental reservoirs that affect disease persistence and control and where environmental control of pathogens can reduce human risk. The complex ecology of these diseases creates a global health problem not easily solved with medical treatment alone.

Methods: We quantified the current global disease burden caused by environmentally mediated infectious diseases and used a structural equation model to explore environmental and socioeconomic factors associated with the human burden of environmentally mediated pathogens across all countries.

View Article and Find Full Text PDF

As sustainable development practitioners have worked to "ensure healthy lives and promote well-being for all" and "conserve life on land and below water", what progress has been made with win-win interventions that reduce human infectious disease burdens while advancing conservation goals? Using a systematic literature review, we identified 46 proposed solutions, which we then investigated individually using targeted literature reviews. The proposed solutions addressed diverse conservation threats and human infectious diseases, and thus, the proposed interventions varied in scale, costs, and impacts. Some potential solutions had medium-quality to high-quality evidence for previous success in achieving proposed impacts in one or both sectors.

View Article and Find Full Text PDF

Humans live in complex socio-ecological systems where we interact with parasites and pathogens that spend time in abiotic and biotic environmental reservoirs (e.g., water, air, soil, other vertebrate hosts, vectors, intermediate hosts).

View Article and Find Full Text PDF

A debate has emerged over the potential socio-ecological drivers of wildlife-origin zoonotic disease outbreaks and emerging infectious disease (EID) events. This Review explores the extent to which the incidence of wildlife-origin infectious disease outbreaks, which are likely to include devastating pandemics like HIV/AIDS and COVID-19, may be linked to excessive and increasing rates of tropical deforestation for agricultural food production and wild meat hunting and trade, which are further related to contemporary ecological crises such as global warming and mass species extinction. Here we explore a set of precautionary responses to wildlife-origin zoonosis threat, including: (a) limiting human encroachment into tropical wildlands by promoting a global transition to diets low in livestock source foods; (b) containing tropical wild meat hunting and trade by curbing urban wild meat demand, while securing access for indigenous people and local communities in remote subsistence areas; and (c) improving biosecurity and other strategies to break zoonosis transmission pathways at the wildlife-human interface and along animal source food supply chains.

View Article and Find Full Text PDF

Antibiotic-resistant and antibiotic-associated pathogens are commonly encountered by surgeons. Pathogens such as methicillin-resistant (MRSA), infection (CDI), and carbapenem-resistant (CRE) result in considerable human morbidity, mortality, and excess healthcare expenditure. Human colonization or infection can result from exposure to these pathogens across a range of domains both inside and outside of the built healthcare environment, exposure that may be influenced by socioeconomic and environmental determinants of health, the importance of which has not been investigated fully.

View Article and Find Full Text PDF

There is increasing understanding, globally, that climate change and increased pollution will have a profound and mostly harmful effect on human health. This review brings together international experts to describe both the direct (such as heat waves) and indirect (such as vector-borne disease incidence) health impacts of climate change. These impacts vary depending on vulnerability (i.

View Article and Find Full Text PDF

Human-mediated changes to natural ecosystems have consequences for both ecosystem and human health. Historically, efforts to preserve or restore 'biodiversity' can seem to be in opposition to human interests. However, the integration of biodiversity conservation and public health has gained significant traction in recent years, and new efforts to identify solutions that benefit both environmental and human health are ongoing.

View Article and Find Full Text PDF

Background: Infectious disease risk is driven by three interrelated components: exposure, hazard, and vulnerability. For schistosomiasis, exposure occurs through contact with water, which is often tied to daily activities. Water contact, however, does not imply risk unless the environmental hazard of snails and parasites is also present in the water.

View Article and Find Full Text PDF

Schistosome parasites infect more than 200 million people annually, mostly in sub-Saharan Africa, where people may be co-infected with more than one species of the parasite. Infection risk for any single species is determined, in part, by the distribution of its obligate intermediate host snail. As the World Health Organization reprioritizes snail control to reduce the global burden of schistosomiasis, there is renewed importance in knowing when and where to target those efforts, which could vary by schistosome species.

View Article and Find Full Text PDF
Article Synopsis
  • Computer vision, specifically convolutional neural networks (CNNs), is explored for classifying environmental stages of parasites and their snail hosts in public health, focusing on schistosomiasis as a case study.
  • The study trained a CNN on a dataset of over 10,600 images from the Senegal River Basin, achieving high accuracy (99% for snails and 91% for cercariae) comparable to expert guidelines.
  • Results indicate that such machine learning models could assist in identifying disease vectors in remote areas, enhancing public health efforts by providing a practical tool for classification using smartphones.
View Article and Find Full Text PDF

Background: Water resources development promotes agricultural expansion and food security. But are these benefits offset by increased infectious disease risk? Dam construction on the Senegal River in 1986 was followed by agricultural expansion and increased transmission of human schistosomes. Yet the mechanisms linking these two processes at the individual and household levels remain unclear.

View Article and Find Full Text PDF

Schistosomiasis, or "snail fever", is a parasitic disease affecting over 200 million people worldwide. People become infected when exposed to water containing particular species of freshwater snails. Habitats for such snails can be mapped using lightweight, inexpensive and field-deployable consumer-grade Unmanned Aerial Vehicles (UAVs), also known as drones.

View Article and Find Full Text PDF

Recent evidence suggests that snail predators may aid efforts to control the human parasitic disease schistosomiasis by eating aquatic snail species that serve as intermediate hosts of the parasite. Potential synergies between schistosomiasis control and aquaculture of giant prawns are evaluated using an integrated bio-economic-epidemiologic model. Combinations of stocking density and aquaculture cycle length that maximize cumulative, discounted profit are identified for two prawn species in sub-Saharan Africa: the endemic, non-domesticated , and the non-native, domesticated .

View Article and Find Full Text PDF

Tropical forest loss currently exceeds forest gain, leading to a net greenhouse gas emission that exacerbates global climate change. This has sparked scientific debate on how to achieve natural climate solutions. Central to this debate is whether sustainably managing forests and protected areas will deliver global climate mitigation benefits, while ensuring local peoples' health and well-being.

View Article and Find Full Text PDF

Control of neglected tropical diseases (NTDs) via mass drug administration (MDA) has increased considerably over the past decade, but strategies focused exclusively on human treatment show limited efficacy. This paper investigated trade-offs between drug and environmental treatments in the fight against NTDs by using schistosomiasis as a case study. We use optimal control techniques where the planner's objective is to treat the disease over a time horizon at the lowest possible total cost, where the total costs include treatment, transportation and damages (reduction in human health).

View Article and Find Full Text PDF

Background: Agrochemical pollution of surface waters is a growing global environmental challenge, especially in areas where agriculture is rapidly expanding and intensifying. Agrochemicals might affect schistosomiasis transmission through direct and indirect effects on Schistosoma parasites, their intermediate snail hosts, snail predators, and snail algal resources. We aimed to review and summarise the effects of these agrochemicals on schistosomiasis transmission dynamics.

View Article and Find Full Text PDF