Publications by authors named "Susanne Grimsby"

Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that regulates embryonic development and tissue homeostasis; however, aberrations of its activity occur in cancer. TGF-beta signals through its Type II and Type I receptors (TbetaRII and TbetaRI) causing phosphorylation of Smad proteins. TGF-beta-associated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family, was originally identified as an effector of TGF-beta-induced p38 activation.

View Article and Find Full Text PDF

ATM, a DNA-damage sensitive kinase and p53, are frequently inactivated in a variety of cancers as they together with gammaH2AX are critical guardians against DNA damage. Here, we report of a functional cross-talk between the cytokine TGFbeta and p53, leading to apoptosis of epithelial cells, involving Smad7, a TGFbeta target gene p38 MAP kinase, and ATM. Using ectopic expression of p53, siRNA for Smad7, p38alpha-/- deficient cells and specific inhibitors, we show that TGF-beta induces apoptosis via ATM and p53 in epithelial cells.

View Article and Find Full Text PDF
Article Synopsis
  • Members of the TGF-beta and Wnt/wingless superfamilies play crucial roles in regulating cell fate during development and tissue maintenance.
  • Smad7 interacts with beta-catenin and LEF1/TCF in a way that depends on TGF-beta, and it's necessary for the accumulation of these proteins in certain human cell types.
  • Suppressing Smad7 hinders TGF-beta's effects, including preventing specific protein activations and the crucial association between beta-catenin and LEF1, which is linked to TGF-beta-induced apoptosis.
View Article and Find Full Text PDF

Smad3 is an important component of transforming growth factor-beta (TGFbeta) intracellular signalling. To identify novel interacting proteins of Smad3, we performed pull-down assays with Smad3 constructs fused to glutathione-S-transferase. Proteins which formed complexes with these constructs were analyzed by two-dimensional gel electrophoresis, and were identified by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry.

View Article and Find Full Text PDF

Transforming growth factor-beta (TGFbeta) is a potent regulator of cell proliferation, differentiation, apoptosis, and migration. TGF-beta type I receptor (TbetaR-I), which has intrinsic serine/threonine kinase activity, is a key component in activation of intracellular TGFbeta signaling. We studied two different classes of TbetaR-I inhibitors, i.

View Article and Find Full Text PDF