Publications by authors named "Susanne Gier"

The giant sulfide-oxidizing bacteria are particularly prone to preservation in the rock record, and their fossils have been identified in ancient phosphorites, cherts, and carbonates. This study reports putative spherical fossils preserved in the Devonian Hollard Mound hydrocarbon-seep deposit. Based on petrographical, mineralogical, and geochemical evidence the putative microfossils are interpreted as sulfide-oxidizing bacteria similar to the present-day genus Thiomargarita, which is also found at modern hydrocarbon seeps.

View Article and Find Full Text PDF

Dolomite [CaMg(CO)] formation under Earth surface conditions is considered largely inhibited, yet protodolomite (with a composition similar to dolomite but lacking cation ordering), and in some cases also dolomite, was documented in modern shallow marine and lacustrine, evaporative environments. Authigenic carbonate mud from Lake Neusiedl, a shallow, episodically evaporative lake in Austria consists mainly of Mg-calcite with zoning of Mg-rich and Mg-poor regions in μm-sized crystals. Within the Mg-rich regions, high-resolution transmission electron microscopy revealed < 5-nm-sized domains with dolomitic ordering, i.

View Article and Find Full Text PDF

Primary gypsum deposits, which accumulated in the Mediterranean Basin during the so-called Messinian salinity crisis (5.97-5.33 Ma), represent an excellent archive of microbial life.

View Article and Find Full Text PDF

The present study examines deformation bands in calcareous arkosic sands. The investigated units can be considered as an equivalent to the Matzen field in the Vienna Basin (Austria), which is one of the most productive oil reservoirs in central Europe. The outcrop exposes carbonate-free and carbonatic sediments of Badenian age separated by a normal fault.

View Article and Find Full Text PDF

In this study we analyzed five core samples from a hydrocarbon reservoir, the Matzen Field in the Vienna Basin (Austria). Deformation bands occur as single bands or as strands of several bands. In contrast to most published examples of deformation bands in terrigeneous sandstones, the reduction of porosity is predominantly caused by the precipitation of Fe-rich dolomite cement within the bands, and only subordinately by cataclasis of detrital grains.

View Article and Find Full Text PDF