Every day, thousands of patients receive erythrocyte concentrates (ECs). They are indispensable for modern medicine, despite their limited resource. Artificial oxygen carriers (AOCs) represent a promising approach to reduce the need for ECs.
View Article and Find Full Text PDFThe failure of insulin-producing β-cells is the underlying cause of hyperglycemia in diabetes mellitus. β-cell decay has been linked to hypoxia, chronic inflammation, and oxidative stress. Thioredoxin (Trx) proteins are major actors in redox signaling and essential for signal transduction and the cellular stress response.
View Article and Find Full Text PDFBackground: Thioredoxin (Trx) family proteins are crucial mediators of cell functions via regulation of the thiol redox state of various key proteins and the levels of the intracellular second messenger hydrogen peroxide. Their expression, localization and functions are altered in various pathologies. Here, we have analyzed the impact of Trx family proteins in neuronal development and recovery, following hypoxia/ischemia and reperfusion.
View Article and Find Full Text PDFThe proteins from the thioredoxin family are crucial actors in redox signaling and the cellular response to oxidative stress. The major intracellular source for oxygen radicals are the components of the respiratory chain in mitochondria. Here, we show that the mitochondrial 2-Cys peroxiredoxin (Prx3) is not only substrate for thioredoxin 2 (Trx2), but can also be reduced by glutaredoxin 2 (Grx2) via the dithiol reaction mechanism.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2010
Mammalian glutaredoxin 3 (Grx3/PICOT) is an essential protein involved in the regulation of signal transduction, for instance during immune cell activation and development of cardiac hypertrophy, presumably in response to redox signals. This function requires the sensing of such stresses by a hitherto unknown mechanism. Here, we characterized Grx3/PICOT as iron-sulfur protein.
View Article and Find Full Text PDF