Publications by authors named "Susanne Carlsson"

Galectin-8 has two carbohydrate recognition domains (CRDs), both of which bind beta-galactosides, but have different fine specificity for larger saccharides. Previously we found that both CRDs were needed for efficient cell surface binding and signaling by soluble galectin-8, but unexpectedly binding of the N-CRD to its best ligands, alpha2-3-sialylated galactosides, was not needed. In search for another role for this fine specificity, we now compared endocytosis of galectin-8 in Chinese hamster ovary (CHO) cells and in a mutant (Lec2) lacking sialylated glycans, by fluorescence microscopy.

View Article and Find Full Text PDF

Galectin-8 has two different carbohydrate recognition domains (CRDs), the N-terminal Gal-8N and the C-terminal Gal-8C linked by a peptide, and has various effects on cell adhesion and signaling. To understand the mechanism for these effects further, we compared the binding activities of galectin-8 in solution with its binding and activation of cells. We used glycan array analysis to broaden the specificity profile of the two galectin-8 CRDs, as well as intact galectin-8s (short and long linker), confirming the unique preference for sulfated and sialylated glycans of Gal-8N.

View Article and Find Full Text PDF

Described is the synthesis of a fluorescent LacNAc derivative appended with a 3'-deoxy-3'-naphthamido functionality, 2-(fluorescein-5/6-amido)ethyl 3-deoxy-3-(2-naphthamido)-beta-D-galactopyranosyl-(1-->4)-2-acetamido-2-deoxy-beta-D-glucopyranoside, which confers high affinity (Kd 170 nM) and selectivity for galectin-3 via a stacking interaction with Arg144. Its use as a selective and sensitive galectin-3 probe is demonstrated with fluorescence polarization measurements.

View Article and Find Full Text PDF

Galectins are implicated in a large variety of biological functions, many of which depend on their carbohydrate-binding ability. Fifteen members of the family have been identified in vertebrates based on binding to galactose (Gal) that is mediated by one or two, evolutionarily conserved, carbohydrate-recognition domains (CRDs). Variations in glycan structures expressed on glycoconjugates at the cell surface may, therefore, affect galectin binding and functions.

View Article and Find Full Text PDF

The galectins are a family of [small beta]-galactoside-binding proteins that have been implicated in cancer and inflammation processes. Herein, we report the synthesis of a library of 28 compounds that was tested for binding to galectins-1, -3, -7, -8N and -9N. An aromatic nucleophilic substitution reaction between 1,5-difluoro-2,4-dinitrobenzene and a galacto thiol gave 5-fluoro-2,4-dinitrophenyl 2,3,4,6-tetra-O-acetyl-1-thio-beta-D-galactopyranoside.

View Article and Find Full Text PDF

Good evidence suggest roles of galectins in cancer, immunity and inflammation, and development, but a unifying picture of their biological function is lacking. Instead galectins appear to have a particularly diverse, bewildering but intriguing array of activities both inside and outside cells--"clear truths and mysteries are inextricably twined". Fortunately this has not discouraged but rather enthused a large number of good galectin researchers, some of which have contributed to this special issue of Glycoconjugate Journal to provide a personal, critical status of the field.

View Article and Find Full Text PDF

Fluorescence labeling of naturally occurring saccharides provides a tool for studying lectins. A practical and efficient two-step protocol for fluorescence labeling of reducing sugars without disrupting their pyranose structure has been developed, consisting of generation of the amino sugar using NH(4)HCO(3)(s)/NH(3)(aq, concentrated) followed by BOP-mediated acylation with derivatives of 5- or 6-carboxyfluorescein. The acylated conjugates were subsequently run against galectins-1, -3, and -8, beta-galactoside recognizing lectins of current interest, in a fluorescence polarization binding assay.

View Article and Find Full Text PDF