Publications by authors named "Susanne C Schubert"

Rationale: In many organs, hypoxic cell death triggers sterile neutrophilic inflammation via IL-1R signaling. Although hypoxia is common in airways from patients with cystic fibrosis (CF), its role in neutrophilic inflammation remains unknown. We recently demonstrated that hypoxic epithelial necrosis caused by airway mucus obstruction precedes neutrophilic inflammation in Scnn1b-transgenic (Scnn1b-Tg) mice with CF-like lung disease.

View Article and Find Full Text PDF

Respiratory progenitors can be efficiently generated from pluripotent stem cells (PSCs). However, further targeted differentiation into bronchoalveolar sublineages is still in its infancy, and distinct specifying effects of key differentiation factors are not well explored. Focusing on airway epithelial Clara cell generation, we analyzed the effect of the glucocorticoid dexamethasone plus cAMP-elevating agents (DCI) on the differentiation of murine embryonic and induced pluripotent stem cells (iPSCs) into bronchoalveolar epithelial lineages, and whether keratinocyte growth factor (KGF) might further influence lineage decisions.

View Article and Find Full Text PDF

Whereas cigarette smoking remains the main risk factor for emphysema, recent studies in β-epithelial Na(+) channel-transgenic (βENaC-Tg) mice demonstrated that airway surface dehydration, a key pathophysiological mechanism in cystic fibrosis (CF), caused emphysema in the absence of cigarette smoke exposure. However, the underlying mechanisms remain unknown. The aim of this study was to elucidate mechanisms of emphysema formation triggered by airway surface dehydration.

View Article and Find Full Text PDF

Alveolar epithelial type II (ATII)-like cells can be generated from murine embryonic stem cells (ESCs), although to date, no robust protocols applying specific differentiation factors are established. We hypothesized that the keratinocyte growth factor (KGF), an important mediator of lung organogenesis and primary ATII cell maturation and proliferation, together with dexamethasone, 8-bromoadenosine-cAMP, and isobutylmethylxanthine (DCI), which induce maturation of primary fetal ATII cells, also support the alveolar differentiation of murine ESCs. Here we demonstrate that the above stimuli synergistically potentiate the alveolar differentiation of ESCs as indicated by increased expression of the surfactant proteins (SP-) C and SP-B.

View Article and Find Full Text PDF

Chronic lung disease remains the major cause of morbidity and mortality of cystic fibrosis (CF) patients. Cftr mutant mice developed severe intestinal obstruction, but did not exhibit the characteristic CF ion transport defects (i.e.

View Article and Find Full Text PDF

Studies in cystic fibrosis patients and mice overexpressing the epithelial Na(+) channel beta-subunit (betaENaC-Tg) suggest that raised airway Na(+) transport and airway surface liquid (ASL) depletion are central to the pathogenesis of cystic fibrosis lung disease. However, patients or mice with Liddle gain-of-function betaENaC mutations exhibit hypertension but no lung disease. To investigate this apparent paradox, we compared the airway phenotype (nasal versus tracheal) of Liddle with CFTR-null, betaENaC-Tg, and double mutant mice.

View Article and Find Full Text PDF

Conditional regulation of gene expression by the combined use of a lung-specific promoter and the tetracycline-regulated system provides a powerful tool for studying gene function in lung biology and disease pathogenesis in a development-independent fashion. However, the original version of the reverse tetracycline-dependent transactivator (rtTA) exhibited limited doxycycline sensitivity and residual affinity to its promoter (P(tet)), producing leaky transgene expression in the absence of doxycycline. These limitations impeded the use of this system in studying gene dosage effects in pulmonary pathogenesis and repair mechanisms in the diseased lung.

View Article and Find Full Text PDF

Rationale: Increased airway Na(+) absorption mediated by epithelial Na(+) channels (ENaC) is a characteristic abnormality in the pathogenesis of cystic fibrosis (CF) lung disease. However, inhalation therapy with the ENaC blocker amiloride did not have therapeutic benefits in patients with CF with established lung disease.

Objectives: We hypothesized that preventive inhibition of increased Na(+) absorption in a structurally normal lung may be required for effective therapy of CF lung disease in vivo, and that therapeutic effects of late amiloride intervention may be impeded by the chronic disease process.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: