Theta capillary nanoelectrospray ionization (θ-nanoESI) can be used to "supercharge" protein ions directly from solution for detection by mass spectrometry (MS). In native top-down MS, the extent of protein charging is low. Given that ions with more charge fragment more readily, increasing charge can enhance the extent of sequence information obtained by top-down MS.
View Article and Find Full Text PDFIdiopathic orbital inflammation is rare in the pediatric population, particularly infants. It can be mistaken either for orbital infection or malignant tumors. We report the case of a 9-month-old previously healthy white boy who presented with right upper eyelid swelling.
View Article and Find Full Text PDFBackground: Following the publication of the 2018 World Cancer Research Fund (WCRF) and American Institute for Cancer Research (AICR) Third Expert Report, a collaborative group was formed to develop a standardized scoring system and provide guidance for research applications.
Methods: The 2018 WCRF/AICR Cancer Prevention Recommendations, goals, and statements of advice were examined to define components of the new Score. Cut-points for scoring were based on quantitative guidance in the 2018 Recommendations and other guidelines, past research that operationalized 2007 WCRF/AICR Recommendations, and advice from the Continuous Update Project Expert Panel.
Theta nanoelectrospray ionization of protein ions formed from aqueous buffer solutions that are mixed with denaturing solutions containing cyclic alkylcarbonates (e.g., vinyl ethylene carbonate; VEC) results in a significant increase in the extent of ion charging compared to native mass spectrometry.
View Article and Find Full Text PDFWe present a 100 kHz 2D IR spectrometer. The system utilizes a ytterbium all normal dispersion fiber oscillator as a common source for the pump and seed beams of a MgO:PPLN OPCPA. The 1030 nm OPCPA pump is generated by amplification of the oscillator in cryocooled Yb:YAG amplifiers, while the 1.
View Article and Find Full Text PDFHigh-harmonic generation (HHG) traditionally combines ~100 near-infrared laser photons to generate bright, phase-matched, extreme ultraviolet beams when the emission from many atoms adds constructively. Here, we show that by guiding a mid-infrared femtosecond laser in a high-pressure gas, ultrahigh harmonics can be generated, up to orders greater than 5000, that emerge as a bright supercontinuum that spans the entire electromagnetic spectrum from the ultraviolet to more than 1.6 kilo-electron volts, allowing, in principle, the generation of pulses as short as 2.
View Article and Find Full Text PDF