() is the primary agent of bovine tuberculosis (TB) in Mediterranean buffalo, which has a negative economic impact on buffalo herds. Improving TB diagnostic performance in this species represents a key step to eradicate efficiently this disease. We have recently shown the utility of the IFN-γ assay in the diagnosis of infection in Mediterranean buffaloes (), but other cytokines might be useful immunological biomarkers of this infection.
View Article and Find Full Text PDFSwine are considered one of the most relevant large animal biomedical models since they share many immunological similarities with humans. Despite that, macrophage polarization has not comprehensively investigated in pigs. In this study, porcine monocyte-derived macrophages (moMΦ) were untreated or stimulated with IFN-γ + LPS (classical activation), or by different M2 polarizing stimuli: IL-4, IL-10, TGF-β, or dexamethasone.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV) causes a devastating disease affecting domestic and wild pigs. ASF was first introduced in Sardinia in 1978 and until 2019 only genotype I isolates were identified. A remarkable genetic stability of Sardinian ASFV isolates was described, nevertheless in 2019 two wild boar isolates with a sustained genomic deletion (4342 base pairs) were identified (7303WB/19, 7212WB/19).
View Article and Find Full Text PDFThe dietary supplementation of olive oil by-products, including olive mill waste-water (OMWW) in animal diets, is a novel application that allows for their re-utilization and recycling and could potentially decrease the use of antibiotics, antimicrobial resistance risk in livestock species, and the occurrence of intestinal diseases. is one of the most widespread intestinal pathogens in the world, causing enterocolitis in pigs. The aim of this study was to investigate the effect of an OMWW extract enriched in polyphenols (hydroxytyrosol and tyrosol) in the immune response of an intestinal porcine epithelial cell line (IPEC-J2) following infection.
View Article and Find Full Text PDFAfrican swine fever (ASF) is a devastating infectious disease of domestic pigs and wild boar that is spreading quickly around the world and causing huge economic losses. Although the development of effective vaccines is currently being attempted by several labs, the absence of globally recognized licensed vaccines makes disease prevention and early detection even more crucial. ASF has spread across many countries in Europe and about two years ago affected the Italian susceptible population.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV) is the etiological agent of a haemorrhagic disease that threatens the global pig industry. There is an urgency to develop a safe and efficient vaccine, but the knowledge of the immune-pathogenetic mechanisms behind ASFV infection is still very limited. In this paper, we evaluated the haematological and immunological parameters of domestic pigs vaccinated with the ASFV Lv17/WB/Rie1 strain or its derived mutant Lv17/WB/Rie1/d110-11L and then challenged with virulent Armenia/07 ASFV.
View Article and Find Full Text PDFIntroduction: Extracellular vesicles (EVs) are nanometric-membrane-bound sub-cellular structures, which can be recovered from milk. Milk EVs have drawn increasing interest due to their potential biomedical applications, therefore it is important to investigate their impact on key immune cells, such as macrophages.
Methods: In this work, the immunomodulatory effects of goat milk EVs on untreated (moMФ) and classically activated (moM1) porcine monocyte-derived macrophages were investigated using flow cytometry, ELISA, and gene expression assays.
Extracellular vesicles (EVs) are nanometric spherical structures, enclosed in a lipid bilayer membrane and secreted by multiple cell types under specific physiologic and pathologic conditions. Their complex cargo modulates immune cells within an inflammatory microenvironment. Milk is one of the most promising sources of EVs in terms of massive recovery, and milk extracellular vesicles (mEVs) have immunomodulatory and anti-inflammatory effects.
View Article and Find Full Text PDFSwine are attracting increasing attention as a biomedical model, due to many immunological similarities with humans. However, porcine macrophage polarization has not been extensively analyzed. Therefore, we investigated porcine monocyte-derived macrophages (moMΦ) triggered by either IFN-γ + LPS (classical activation) or by diverse "M2-related" polarizing factors: IL-4, IL-10, TGF-β, and dexamethasone.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV) is the etiological agent of a lethal disease of domestic pigs and wild boars. ASF threatens the pig industry worldwide due to the lack of a licensed vaccine or treatment. The disease has been endemic for more than 40 years in Sardinia (Italy), but an intense campaign pushed it close to eradication; virus circulation was last detected in wild boars in 2019.
View Article and Find Full Text PDFToll-like receptor 2 (TLR2) ligands are attracting attention as prophylactic and immunopotentiator agents against pathogens, including viruses. We previously reported that a synthetic diacylated lipopeptide (Mag-Pam2Cys_P48) polarized porcine macrophages towards a proinflammatory antimicrobial phenotype. Here, we investigated its role in modulating monocyte-derived macrophage (moMΦ) responses against African swine fever virus (ASFV), the etiological agent of one of the greatest threats to the global pig industry.
View Article and Find Full Text PDFAfrican swine fever viruses (ASFV), currently a serious threat to the global pig industry, primarily target porcine macrophages. Macrophages are characterized by their remarkable plasticity, being able to modify their phenotype and functions in response to diverse stimuli. Since IL-10 and TGF-β polarize macrophages toward an anti-inflammatory phenotype, we analyzed their impact on porcine monocyte-derived macrophages' (moMΦ) susceptibility to infection and their responses to two genotype I ASFV strains, virulent 26544/OG10 and attenuated NH/P68.
View Article and Find Full Text PDFCadmium (Cd) is regarded as one of the most toxic heavy metals, which can enter the food chain through environmental contamination and be bioaccumulated. Its exposure in Ligurian wild boars was monitored between 2016-2020 and revealed high level of this heavy metal in different provinces. In one of these polluted area, 21 wild boars were additionally sampled and the relationship between hepatic and renal Cd concentration suggested that majority of these animals presented chronic intoxication.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV) is the etiological agent of the devastating disease African swine fever (ASF), for which there is currently no licensed vaccine or treatment available. ASF is defined as one of the most serious animal diseases identified to date, due to its global spread in regions of Africa, Europe and Asia, causing massive economic losses. On the Italian island of Sardinia, the disease has been endemic since 1978, although the last control measures put in place achieved a significant reduction in ASF, and the virus has been absent from circulation since April 2019.
View Article and Find Full Text PDFToll-like receptor 2 (TLR2) ligands are attracting increasing attention as prophylactic and immunotherapeutic agents against pathogens and tumors. We previously observed that a synthetic diacylated lipopeptide based on a surface protein of (Mag-Pam2Cys) strongly activated innate immune cells, including porcine monocyte-derived macrophages (moMΦ). In this study, we utilized confocal microscopy, flow cytometry, multiplex cytokine ELISA, and RT-qPCR to conduct a comprehensive analysis of the effects of scalar doses of Mag-Pam2Cys on porcine moMΦ.
View Article and Find Full Text PDFMacrophages are phagocytic cells involved in maintaining tissue homeostasis and defense against pathogens. Macrophages may be polarized into different functionally specialized subsets. M2c macrophages arise following stimulation with IL-10 or TGF-β and mediate anti-inflammatory and tissue repair functions.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV), the cause of a devastating disease affecting domestic and wild pigs, has been present in Sardinia since 1978. In the framework of the regional ASF eradication plan, 4484 illegal pigs were culled between December 2017 and February 2020. The highest disease prevalence was observed in the municipality with the highest free-ranging pig density, and culling actions drastically reduced ASFV circulation among these animals.
View Article and Find Full Text PDFAfrican Swine Fever Virus (ASFV) has tropism for macrophages, which seems to play a crucial role in disease pathogenesis and viral dissemination. Previous studies showed that ASFV developed mechanisms to evade type I interferon (IFN) responses. Hence, we analyzed the ability of ASFV strains of diverse virulence to modulate IFN-β and IFN-α responses.
View Article and Find Full Text PDFAfrican swine fever (ASF) poses a severe threat to the global pig industry for which currently there is no available vaccine. The aetiological ASF virus (ASFV) has a predilection for cells of the myeloid lineage, however little is known about its interaction with polarised macrophages. This study focused on the interactions of porcine monocyte-derived un-activated (moMΦ), classically (moM1), alternatively (moM2), and IFN-a-activated macrophages with two genotype I ASFV strains: virulent 22653/14 and attenuated NH/P68.
View Article and Find Full Text PDFPorcine circovirus type 2 (PCV2) is associated with multi-factorial syndromes, commonly known as porcine-circovirus-associated diseases, which cause severe economic losses in the swine industry worldwide. Four genotypes (PCV2a, PCV2b, PCV2c, and PCV2d) have been identified. Lately, the prevalence of PCV2d has been increasing in many countries, thereby prefiguring a global replacement of PCV2b.
View Article and Find Full Text PDF