Membrane-embedded transporters impart essential functions to cells as they mediate sensing and the uptake and extrusion of nutrients, waste products, and effector molecules. Promiscuous multidrug exporters are implicated in resistance to drugs and antibiotics and are highly relevant for microbial engineers who seek to enhance the tolerance of cell factory strains to hydrophobic bioproducts. Here, we report on the identification of small multidrug resistance (SMR) transporters in early-branching anaerobic fungi (Neocallimastigomycetes).
View Article and Find Full Text PDFThe functional properties of proteorhodopsin (PR) have been found to be strongly modulated by oligomeric distributions and lipid membrane mimetics. This study aims to distinguish and explain their effects by investigating how oligomer formation impacts PR's function of proton transport in lipid-based membrane mimetic environments. We find that PR forms stable hexamers and pentamers in both E.
View Article and Find Full Text PDFCurr Opin Biotechnol
February 2022
Lignocellulose processing yields a heterogeneous mixture of substances, which are poorly utilized by current industrial strains. For efficient valorization of recalcitrant biomass, it is critical to identify and engineer new membrane proteins that enable the broad uptake of hydrolyzed substrates. Whereas glucose consumption rarely presents a bottleneck for cell factories, there is also a lack of transporters that allow co-consumption of glucose with other abundant biomass sugars such as xylose.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) have long been shown to exist as oligomers with functional properties distinct from those of the monomeric counterparts, but the driving factors of oligomerization remain relatively unexplored. Herein, we focus on the human adenosine A receptor (AR), a model GPCR that forms oligomers both in vitro and in vivo. Combining experimental and computational approaches, we discover that the intrinsically disordered C-terminus of AR drives receptor homo-oligomerization.
View Article and Find Full Text PDFIn the yeast Saccharomyces cerevisiae, microbial fuels and chemicals production on lignocellulosic hydrolysates is constrained by poor sugar transport. For biotechnological applications, it is desirable to source transporters with novel or enhanced function from nonconventional organisms in complement to engineering known transporters. Here, we identified and functionally screened genes from three strains of early-branching anaerobic fungi (Neocallimastigomycota) that encode sugar transporters from the recently discovered Sugars Will Eventually be Exported Transporter (SWEET) superfamily in Saccharomyces cerevisiae.
View Article and Find Full Text PDFMicrobiomes are complex and ubiquitous networks of microorganisms whose seemingly limitless chemical transformations could be harnessed to benefit agriculture, medicine, and biotechnology. The spatial and temporal changes in microbiome composition and function are influenced by a multitude of molecular and ecological factors. This complexity yields both versatility and challenges in designing synthetic microbiomes and perturbing natural microbiomes in controlled, predictable ways.
View Article and Find Full Text PDFAnaerobic gut fungi in the phylum Neocallimastigomycota typically inhabit the digestive tracts of large mammalian herbivores, where they play an integral role in the decomposition of raw lignocellulose into its constitutive sugar monomers. However, quantitative tools to study their physiology are lacking, partially due to their complex and unresolved metabolism that includes the largely uncharacterized fungal hydrogenosome. Modern omics approaches combined with metabolic modeling can be used to establish an understanding of gut fungal metabolism and develop targeted engineering strategies to harness their degradation capabilities for lignocellulosic bioprocessing.
View Article and Find Full Text PDFBiocontainment systems are needed to neutralize genetically modified organisms (GMOs) that pose ecological threats outside of controlled environments. In contrast, benign selection markers complement GMOs with reduced fitness. Benign selection agents serve as alternatives to antibiotics, which are costly and risk spread of antibiotic resistance.
View Article and Find Full Text PDFAnaerobic fungi (Neocallimastigomycota) are emerging non-model hosts for biotechnology due to their wealth of biomass-degrading enzymes, yet tools to engineer these fungi have not yet been established. Here, we show that the anaerobic gut fungi have the most GC depleted genomes among 443 sequenced organisms in the fungal kingdom, which has ramifications for heterologous expression of genes as well as for emerging CRISPR-based genome engineering approaches. Comparative genomic analyses suggest that anaerobic fungi may contain cellular machinery to aid in sexual reproduction, yet a complete mating pathway was not identified.
View Article and Find Full Text PDFAnaerobic gut fungi are biomass degraders that form syntrophic associations with other microbes in their native rumen environment. Here, RNA-Seq was used to track and quantify carbohydrate active enzyme (CAZyme) transcription in a synthetic consortium composed of the anaerobic fungus Anaeromyces robustus with methanogen Methanobacterium bryantii. Approximately 5% of total A.
View Article and Find Full Text PDFMetab Eng Commun
December 2019
Membrane-embedded transporters are crucial for the stability and performance of microbial production strains. Apart from engineering known transporters derived from model systems, it is equally important to identify transporters from nonconventional organisms that confer advantageous traits for biotechnological applications. Here, we transferred genes encoding fluoride exporter (FEX) proteins from three strains of early-branching anaerobic fungi () to .
View Article and Find Full Text PDFAnnu Rev Chem Biomol Eng
June 2019
Industrial biotechnology has the potential to decrease our reliance on petroleum for fuel and bio-based chemical production and also enable valorization of waste streams. Anaerobic microorganisms thrive in resource-limited environments and offer an array of novel bioactivities in this regard that could revolutionize biomanufacturing. However, they have not been adopted for widespread industrial use owing to their strict growth requirements, limited number of available strains, difficulty in scale-up, and genetic intractability.
View Article and Find Full Text PDFA wealth of fungal enzymes has been identified from nature, which continue to drive strain engineering and bioprocessing for a range of industries. However, while a number of clades have been investigated, the vast majority of the fungal kingdom remains unexplored for industrial applications. Here, we discuss selected classes of fungal enzymes that are currently in biotechnological use, and explore more basal, non-conventional fungi and their underexploited biomass-degrading mechanisms as promising agents in the transition towards a bio-based society.
View Article and Find Full Text PDFCytochromes P450 (CYP) are attractive enzyme targets in biotechnology as they catalyze stereospecific C-hydroxylations of complex core skeletons at positions that typically are difficult to access by chemical synthesis. Membrane bound CYPs are involved in nearly all plant pathways leading to the formation of high-value compounds. In the present study, we systematically maximize the heterologous expression of six different plant-derived CYP genes in Escherichia coli, using a workflow based on C-terminal fusions to the green fluorescent protein.
View Article and Find Full Text PDFBackground: Engineered cell factories that convert biomass into value-added compounds are emerging as a timely alternative to petroleum-based industries. Although often overlooked, integral membrane proteins such as solute transporters are pivotal for engineering efficient microbial chassis. Anaerobic gut fungi, adapted to degrade raw plant biomass in the intestines of herbivores, are a potential source of valuable transporters for biotechnology, yet very little is known about the membrane constituents of these non-conventional organisms.
View Article and Find Full Text PDFMembrane-associated Cytochromes P450 (P450s) are one of the most important enzyme families for biosynthesis of plant-derived medicinal compounds. However, the hydrophobic nature of P450s makes their use in robust cell factories a challenge. Here, we explore a small library of N-terminal expression tag chimeras of the model plant P450 CYP79A1 in different Escherichia coli strains.
View Article and Find Full Text PDFBackground: Bacterial surface display is an attractive technique for the production of cell-anchored, functional proteins and engineering of whole-cell catalysts. Although various outer membrane proteins have been used for surface display, an easy and versatile high-throughput-compatible assay for evaluating and developing surface display systems is missing.
Results: Using a single domain antibody (also called nanobody) with high affinity for green fluorescent protein (GFP), we constructed a system that allows for fast, fluorescence-based detection of displayed proteins.
Standardization of molecular cloning greatly facilitates advanced DNA engineering, parts sharing, and collaborative efforts such as the iGEM competition. All of these attributes facilitate exploitation of the wealth of genetic information made available by genome and RNA sequencing. Standardization also comes at the cost of reduced flexibility.
View Article and Find Full Text PDFThe increasing number of solved membrane protein structures has led to the recognition of a common feature in a large fraction of the small-molecule transporters: inverted repeat structures, formed by two fused homologous membrane domains with opposite orientation in the membrane. An evolutionary pathway in which the ancestral state is a single gene encoding a dual-topology membrane protein capable of forming antiparallel homodimers has been posited. A gene duplication event enables the evolution of two oppositely orientated proteins that form antiparallel heterodimers.
View Article and Find Full Text PDFThe quaternary structure of the homodimeric small multidrug resistance protein EmrE has been studied intensely over the past decade. Structural models derived from both two- and three-dimensional crystals show EmrE as an anti-parallel homodimer. However, the resolution of the structures is rather low and their relevance for the in vivo situation has been questioned.
View Article and Find Full Text PDFThe bacterial multidrug transporter EmrE is a dual-topology membrane protein and as such is able to insert into the membrane in two opposite orientations. The functional form of EmrE is a homodimer; however, the relative orientation of the subunits in the dimer is under debate. Using EmrE variants with fixed, opposite orientations in the membrane, we now show that, although the proteins are able to form parallel dimers, an antiparallel organization of the subunits in the dimer is preferred.
View Article and Find Full Text PDFThe mechanism by which multispanning helix-bundle membrane proteins are inserted into their target membrane remains unclear. In both prokaryotic and eukaryotic cells, membrane proteins are inserted cotranslationally into the lipid bilayer. Positively charged residues flanking the transmembrane helices are important topological determinants, but it is not known whether they act strictly locally, affecting only the nearest transmembrane helices, or can act globally, affecting the topology of the entire protein.
View Article and Find Full Text PDF