causes anthrax through virulence factors encoded on two plasmids. However, non- organisms within the closely related, environmentally ubiquitous group (BCG) may cause an anthrax-like disease in humans through the partial adoption of anthrax-associated virulence genes, challenging the definition of anthrax disease. To elucidate these phenomena and their evolutionary past, we performed whole-genome sequencing on non- BCG isolates, including 93 archival (1967-2003) and 5 contemporary isolates (2019-2023).
View Article and Find Full Text PDFThe prevalence of Plasmodium falciparum hrp2 (pfhrp2)-deleted parasites threatens the efficacy of the most used and sensitive malaria rapid diagnostic tests and highlights the need for continued surveillance for this gene deletion. While PCR methods are adequate for determining pfhrp2 presence or absence, they offer a limited view of its genetic diversity. Here, we present a portable sequencing method using the MinION.
View Article and Find Full Text PDFThe history of the British Isles and Ireland is characterized by multiple periods of major cultural change, including the influential transformation after the end of Roman rule, which precipitated shifts in language, settlement patterns and material culture. The extent to which migration from continental Europe mediated these transitions is a matter of long-standing debate. Here we study genome-wide ancient DNA from 460 medieval northwestern Europeans-including 278 individuals from England-alongside archaeological data, to infer contemporary population dynamics.
View Article and Find Full Text PDFMycobacterium canettii is a causative agent of tuberculosis in humans, along with the members of the Mycobacterium tuberculosis complex. Frequently used as an outgroup to the M. tuberculosis complex in phylogenetic analyses, M.
View Article and Find Full Text PDFFrom May through July 2020, Arizona was a global hotspot for new COVID-19 cases. In response to the surge of cases, local public health departments looked for innovative ways to form external partnerships to address their staffing needs. In collaboration with the Maricopa County Department of Public Health, the Arizona State University Student Outbreak Response Team (SORT) created and implemented a virtual call center to conduct public health case investigations for COVID-19.
View Article and Find Full Text PDFWe conducted a community seroprevalence survey in Arizona, from September 12 to October 1, 2020, to determine the presence of antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We used the seroprevalence estimate to predict SARS-CoV-2 infections in the jurisdiction by applying the adjusted seroprevalence to the county's population. The estimated community seroprevalence of SARS-CoV-2 infections was 4.
View Article and Find Full Text PDFHepatitis B virus (HBV) has been infecting humans for millennia and remains a global health problem, but its past diversity and dispersal routes are largely unknown. We generated HBV genomic data from 137 Eurasians and Native Americans dated between ~10,500 and ~400 years ago. We date the most recent common ancestor of all HBV lineages to between ~20,000 and 12,000 years ago, with the virus present in European and South American hunter-gatherers during the early Holocene.
View Article and Find Full Text PDFRecent progress in genomic sequencing from patient samples has allowed for the first detailed insight into the within-host genetic diversity of Mycobacterium tuberculosis (M.TB), revealing remarkably low levels of variation. While this has often been attributed to low mutation rates, other factors have been described, including resistance evolution (i.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
November 2020
Ancient latrine sediments, which contain the concentrated collective biological waste of past whole human communities, have the potential to be excellent proxies for human gastrointestinal health on the population level. A rich body of literature explores their use to detect the presence of gut-associated eukaryotic parasites through microscopy, immunoassays and genetics. Despite this interest, a lack of studies have explored the whole genetic content of ancient latrine sediments through consideration not only of gut-associated parasites, but also of core community gut microbiome signals that remain from the group that used the latrine.
View Article and Find Full Text PDFBackground: Although tuberculosis accounts for the highest mortality from a bacterial infection on a global scale, questions persist regarding its origin. One hypothesis based on modern Mycobacterium tuberculosis complex (MTBC) genomes suggests their most recent common ancestor followed human migrations out of Africa approximately 70,000 years before present. However, studies using ancient genomes as calibration points have yielded much younger dates of less than 6000 years.
View Article and Find Full Text PDFDevelopments in techniques for identification of pathogen DNA in archaeological samples can expand our resolution of disease detection. Our application of a non-targeted molecular screening tool for the parallel detection of pathogens in historical plague victims from post-medieval Lithuania revealed the presence of more than one active disease in one individual. In addition to Yersinia pestis, we detected and genomically characterized a septic infection of Treponema pallidum pertenue, a subtype of the treponemal disease family recognised as the cause of the tropical disease yaws.
View Article and Find Full Text PDFThe last century has witnessed progress in the study of ancient infectious disease from purely medical descriptions of past ailments to dynamic interpretations of past population health that draw upon multiple perspectives. The recent adoption of high-throughput DNA sequencing has led to an expanded understanding of pathogen presence, evolution, and ecology across the globe. This genomic revolution has led to the identification of disease-causing microbes in both expected and unexpected contexts, while also providing for the genomic characterization of ancient pathogens previously believed to be unattainable by available methods.
View Article and Find Full Text PDFIndigenous populations of the Americas experienced high mortality rates during the early contact period as a result of infectious diseases, many of which were introduced by Europeans. Most of the pathogenic agents that caused these outbreaks remain unknown. Through the introduction of a new metagenomic analysis tool called MALT, applied here to search for traces of ancient pathogen DNA, we were able to identify Salmonella enterica in individuals buried in an early contact era epidemic cemetery at Teposcolula-Yucundaa, Oaxaca in southern Mexico.
View Article and Find Full Text PDF