Dravet syndrome is an archetypal rare severe epilepsy, considered 'monogenic', typically caused by loss-of-function SCN1A variants. Despite a recognizable core phenotype, its marked phenotypic heterogeneity is incompletely explained by differences in the causal SCN1A variant or clinical factors. In 34 adults with SCN1A-related Dravet syndrome, we show additional genomic variation beyond SCN1A contributes to phenotype and its diversity, with an excess of rare variants in epilepsy-related genes as a set and examples of blended phenotypes, including one individual with an ultra-rare DEPDC5 variant and focal cortical dysplasia.
View Article and Find Full Text PDFPathogenic variations in the sodium voltage-gated channel alpha subunit 1 (SCN1A) gene are responsible for multiple epilepsy phenotypes, including Dravet syndrome, febrile seizures (FS) and genetic epilepsy with FS plus. Phenotypic heterogeneity is a hallmark of SCN1A-related epilepsies, the causes of which are yet to be clarified. Genetic variation in the non-coding regulatory regions of SCN1A could be one potential causal factor.
View Article and Find Full Text PDFMesial temporal lobe epilepsy with hippocampal sclerosis and a history of febrile seizures is associated with common variation at rs7587026, located in the promoter region of SCN1A. We sought to explore possible underlying mechanisms. SCN1A expression was analysed in hippocampal biopsy specimens of individuals with mesial temporal lobe epilepsy with hippocampal sclerosis who underwent surgical treatment, and hippocampal neuronal cell loss was quantitatively assessed using immunohistochemistry.
View Article and Find Full Text PDFNeuropathol Appl Neurobiol
April 2022
Non-coding DNA (ncDNA) refers to the portion of the genome that does not code for proteins and accounts for the greatest physical proportion of the human genome. ncDNA includes sequences that are transcribed into RNA molecules, such as ribosomal RNAs (rRNAs), microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and un-transcribed sequences that have regulatory functions, including gene promoters and enhancers. Variation in non-coding regions of the genome have an established role in human disease, with growing evidence from many areas, including several cancers, Parkinson's disease and autism.
View Article and Find Full Text PDF