Publications by authors named "Susanna M Thon"

The development of lead sulfide (PbS) colloidal quantum dot (CQD) solar cells has led to significant power conversion efficiency (PCE) improvements in recent years, with record efficiencies now over 15%. Many of the recent advances in improving PCE have focused on improving the interface between the PbS CQD active layer and the zinc oxide (ZnO) electron transport layer (ETL). Proper optimization of the ZnO ETL also increases yield, or the percentage of functioning devices per fabrication run.

View Article and Find Full Text PDF

Plasmonic nanoparticles are highly tunable light-harvesting materials with a wide array of applications in photonics and catalysis. More recently, there has been interest in using aerosolized plasmonic nanoparticles for cloud formation, airborne photocatalysts, and molecular sensors, all of which take advantage of the large scattering cross sections and the ability of these particles to support intense local field enhancement ("hot spots"). While extensive research has investigated properties of plasmonic particles in the solution phase, surfaces, and films, aerosolized plasmonics are relatively unexplored.

View Article and Find Full Text PDF

Frequency domain characterization has long served as an important method for the examination of diverse kinetic processes that occur in solar cells. In this study, we investigated the dynamic response of high-efficiency perovskite solar cells utilizing ultra-low-intensity-modulated photocurrent spectroscopy. Distinctive intensity-modulated photocurrent spectroscopy (IMPS) attributes were detected only as a result of this low-intensity modulation, and their evolution under light and voltage bias was investigated in detail.

View Article and Find Full Text PDF

Significance: Multispectral photoacoustic imaging has the potential to identify lipid-rich, myelinated nerve tissue in an interventional or surgical setting (e.g., to guide intraoperative decisions when exposing a nerve during reconstructive surgery by limiting operations to nerves needing repair, with no impact to healthy or regenerating nerves).

View Article and Find Full Text PDF

N-Type thermoelectrics typically consist of small molecule dopant+polymer host. Only a few polymer dopant+polymer host systems have been reported, and these have lower thermoelectric parameters. N-type polymers with high crystallinity and order are generally used for high-conductivity ( ) organic conductors.

View Article and Find Full Text PDF

A novel n-type copolymer dopant polystyrene-poly(4-vinyl-N-hexylpyridinium fluoride) (PSpF) with fluoride anions is designed and synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. This is thought to be the first polymeric fluoride dopant. Electrical conductivity of 4.

View Article and Find Full Text PDF

Achieving high electrical conductivity and thermoelectric power factor simultaneously for n-type organic thermoelectrics is still challenging. By constructing two new acceptor-acceptor n-type conjugated polymers with different backbones and introducing the 3,4,5-trimethoxyphenyl group to form the new n-type dopant 1,3-dimethyl-2-(3,4,5-trimethoxyphenyl)-2,3-dihydro-1H-benzo[d]imidazole (TP-DMBI), high electrical conductivity of 11 S cm and power factor of 32 μW m  K are achieved. Calculations using Density Functional Theory show that TP-DMBI presents a higher singly occupied molecular orbital (SOMO) energy level of -1.

View Article and Find Full Text PDF

The morphology, chemical composition, and electronic uniformity of thin-film solution-processed optoelectronics are believed to greatly affect device performance. Although scanning probe microscopies can address variations on the micrometer scale, the field of view is still limited to well under the typical device area, as well as the size of extrinsic defects introduced during fabrication. Herein, a micrometer-resolution 2D characterization method with millimeter-scale field of view is demonstrated, which simultaneously collects photoluminescence spectra, photocurrent transients, and photovoltage transients.

View Article and Find Full Text PDF

Spectrally selective materials are of great interest for optoelectronic devices in which wavelength-selectivity of the photoactive material is necessary for applications such as multi-junction solar cells, narrow-band photodetectors, transparent photovoltaics, and tailored emission sources. Achieving controlled transparency or opacity within multiple wavelength bands in the absorption, reflection, and transmission spectra are difficult to achieve in traditional semiconductors that typically absorb at all energies above their electronic band gap and is generally realized by the use of external bandpass filters. Here, we propose an alternate method for achieving spectral selectivity in optoelectronic thin films: the use of photonic band engineering within the absorbing region of a semiconductor in which resonant photonic bands are strongly coupled to the external reflectivity and transmission spectra.

View Article and Find Full Text PDF

Pigmentation is a fundamental characteristic of living organisms that is used to absorb radiation energy and to regulate temperature. Since darker pigments absorb more radiation than lighter ones, they stream more heat, which can provide an adaptive advantage at higher latitudes and a disadvantage near the Tropics, because of the risk of overheating. This intuitive process of color-mediated thermoregulation, also known as the theory of thermal melanism (TTM), has been only tested in ectothermic animal models [1-8].

View Article and Find Full Text PDF

Stokes shift, an energy difference between the excitonic absorption and emission, is a property of colloidal quantum dots (CQDs) typically ascribed to splitting between dark and bright excitons. In some materials, e.g.

View Article and Find Full Text PDF

Air-stable and soluble tetrabutylammonium fluoride (TBAF) is demonstrated as an efficient n-type dopant for the conjugated polymer ClBDPPV. Electron transfer from F anions to the π-electron-deficient ClBDPPV through anion-π electronic interactions is strongly corroborated by the combined results of electron spin resonance, UV-vis-NIR, and ultraviolet photoelectron spectroscopy. Doping of ClBDPPV with 25 mol% TBAF boosts electrical conductivity to up to 0.

View Article and Find Full Text PDF

Colloidal quantum dots (CQDs), are a promising candidate material for realizing colored and semitransparent solar cells, due to their band gap tunability, near infrared responsivity and solution-based processing flexibility. CQD solar cells are typically comprised of several optically thin active and electrode layers that are optimized for their electrical properties; however, their spectral tunability beyond the absorption onset of the CQD layer itself has been relatively unexplored. In this study, we design, optimize and fabricate multicolored and transparent CQD devices by means of thin film interference engineering.

View Article and Find Full Text PDF

The need for low-cost high-performance broadband photon detection with sensitivity in the near infrared (NIR) has driven interest in new materials that combine high absorption with traditional electronic infrastructure (CMOS) compatibility. Here, we demonstrate a facile, low-cost and scalable, catalyst-free one-step solution-processed approach to grow one-dimensional SbSe nanostructures directly on flexible substrates for high-performance NIR photodetectors. Structural characterization and compositional analyses reveal high-quality single-crystalline material with orthorhombic crystal structure and a near-stoichiometric Sb/Se atomic ratio.

View Article and Find Full Text PDF

We report on the significant performance enhancement of SnO thin film ultraviolet (UV) photodetectors (PDs) through incorporation of CuO/SnO nanoscale heterojunctions. The nanoheterojunctions are self-assembled by sputtering Cu clusters that oxidize in ambient to form CuO. We attribute the performance improvements to enhanced UV absorption, demonstrated both experimentally and using optical simulations, and electron transfer facilitated by the nanoheterojunctions.

View Article and Find Full Text PDF

Colloidal quantum dots (CQD) are an attractive thin-film material for photovoltaic applications due to low material costs, ease of fabrication, and size-tunable band gap. Unfortunately, today they suffer from a compromise between light absorption and photocarrier extraction, a fact that currently prevents the complete harvest of incoming above-band-gap solar photons. We have investigated the use of structured substrates and/or electrodes to increase the effective light path through the active material and found that these designs require highly conformal application of the light-absorbing films to achieve the greatest enhancement.

View Article and Find Full Text PDF

Extremely thin-absorber solar cells offer low materials utilization and simplified manufacture but require improved means to enhance photon absorption in the active layer. Here, we report enhanced-absorption colloidal quantum dot (CQD) solar cells that feature transfer-stamped solution-processed pyramid-shaped electrodes employed in a hierarchically structured device. The pyramids increase, by up to a factor of 2, the external quantum efficiency of the device at absorption-limited wavelengths near the absorber band edge.

View Article and Find Full Text PDF

A colloidal quantum dot solar cell is fabricated by spray-coating under ambient conditions. By developing a room-temperature spray-coating technique and implementing a fully automated process with near monolayer control-an approach termed as sprayLD-an electronic defect is eliminated resulting in solar cell performance and statistical distribution superior to prior batch-processed methods along with a hero performance of 8.1%.

View Article and Find Full Text PDF

Colloidal quantum dots are attractive materials for efficient, low-cost and facile implementation of solution-processed optoelectronic devices. Despite impressive mobilities (1-30 cm2 V(-1) s(-1)) reported for new classes of quantum dot solids, it is--surprisingly--the much lower-mobility (10(-3)-10(-2) cm2 V(-1) s(-1)) solids that have produced the best photovoltaic performance. Here we show that it is not mobility, but instead the average spacing among recombination centres that governs the diffusion length of charges in today's quantum dot solids.

View Article and Find Full Text PDF

An elemental-sulfur-based synthesis is reported, which, combined with processing to improve the size dispersion and passivation, results in a low-cost high-quality platform for small-bandgap PbS-CQD-based devices. Size-selective precipitation and cadmium chloride passivation are used to improve the power conversion efficiency of 1 eV bandgap CQD photovoltaic devices dramatically, which leads to record power conversion efficiency for a 1 eV PbS CQD solar cell of 5.4%.

View Article and Find Full Text PDF

The direct observation of the complete electronic band structure of a family of PbS CQD solids via photoelectron spectroscopy is reported. We investigate how materials processing strategies, such as the latest passivation methods that produce record-performance photovoltaics, achieve their performance advances. Halide passivated films show a drastic reduction in states in the midgap, contributing to a marked improvement in the device performance.

View Article and Find Full Text PDF

Solution processed colloidal quantum dot (CQD) solar cells have great potential for large area low-cost photovoltaics. However, light utilization remains low mainly due to the tradeoff between small carrier transport lengths and longer infrared photon absorption lengths. Here, we demonstrate a bottom-illuminated periodic nanostructured CQD solar cell that enhances broadband absorption without compromising charge extraction efficiency of the device.

View Article and Find Full Text PDF

We develop a photovoltaic colloidal quantum dot ink that allows for lossless, single-step coating of large areas in a manufacturing-compatible process. Our materials strategy involves a solution-phase ligand exchange to transport compatible linkers that yield 1-thioglycerol-capped PbS quantum dots in dimethyl sulfoxide with a photoluminescence quantum yield of 24%. A proof-of-principle solar cell made from the ink exhibits 2.

View Article and Find Full Text PDF

Colloidal quantum dot (CQD) solids are attractive materials for photovoltaic devices due to their low-cost solution-phase processing, high absorption cross sections, and their band gap tunability via the quantum size effect. Recent advances in CQD solar cell performance have relied on new surface passivation strategies. Specifically, cadmium cation passivation of surface chalcogen sites in PbS CQDs has been shown to contribute to lowered trap state densities and improved photovoltaic performance.

View Article and Find Full Text PDF