Biological membrane potentials, or voltages, are a central facet of cellular life. Optical methods to visualize cellular membrane voltages with fluorescent indicators are an attractive complement to traditional electrode-based approaches, since imaging methods can be high throughput, less invasive, and provide more spatial resolution than electrodes. Recently developed fluorescent indicators for voltage largely report changes in membrane voltage by monitoring voltage-dependent fluctuations in fluorescence intensity.
View Article and Find Full Text PDFBiological membrane potentials, or voltages, are a central facet of cellular life. Optical methods to visualize cellular membrane voltages with fluorescent indicators are an attractive complement to traditional electrode-based approaches, since imaging methods can be high throughput, less invasive, and provide more spatial resolution than electrodes. Recently developed fluorescent indicators for voltage largely report changes in membrane voltage by monitoring voltage-dependent fluctuations in fluorescence intensity.
View Article and Find Full Text PDFFluorescence microscopy with fluorescent reporters that respond to environmental cues is a powerful method for interrogating biochemistry and biophysics in living systems. Photoinduced electron transfer (PeT) is commonly used as a trigger to modulate fluorescence in response to changes in the biological environment. PeT-based indicators rely on PeT either into the excited state (acceptor PeT) or out of the excited state (donor PeT).
View Article and Find Full Text PDFMembrane potential is a fundamental biophysical parameter common to all of cellular life. Traditional methods to measure membrane potential rely on electrodes, which are invasive and low-throughput. Optical methods to measure membrane potential are attractive because they have the potential to be less invasive and higher throughput than classic electrode based techniques.
View Article and Find Full Text PDFThe degree of hydrophobicity and net charge per residue are physical properties that enable the discrimination of folded from intrinsically disordered proteins (IDPs) solely on the basis of amino acid sequence. Here, we improve upon the existing classification of proteins and IDPs based on the parameters mentioned above by adopting the scale of nonpolar content of Rose et al. and by taking amino acid side-chain acidity and basicity into account.
View Article and Find Full Text PDF