Introduction: Previous studies demonstrated that the lactose-binding protein (hepatocellular carcinoma-intestine-pancreas and pancreatitis-associated proteins (HIP/PAP)) is upregulated >130 times in peritumoral pancreatic tissue as compared to normal pancreatic tissue. Therefore, we developed a new radiolabeled ligand of HIP/PAP, the ethyl-β-D-galactopyranosyl-(1,4')-2'-deoxy-2'-[¹⁸F]fluoro-β-D-glucopyranoside (Et-[¹⁸F]FDL) for noninvasive imaging of pancreatic carcinoma using positron emission tomography and computerized tomography (PET/CT).
Methods: The novel precursor and radiolabeling methods for synthesis of Et-[¹⁸F]FDL produced no isomers; the average decay-corrected radiochemical yield was 68%, radiochemical purity >99%, and specific activity >74 GBq/µmol.
Background: Early diagnosis of pancreatic carcinoma with highly sensitive diagnostic imaging methods could save lives of many thousands of patients, because early detection increases resectability and survival rates. Current non-invasive diagnostic imaging techniques have inadequate resolution and sensitivity for detection of small size ( approximately 2-3 mm) early pancreatic carcinoma lesions. Therefore, we have assessed the efficacy of positron emission tomography and computer tomography (PET/CT) imaging with beta-O-D-galactopyranosyl-(1,4')-2'-deoxy-2'-[(18)F]fluoroethyl-D-glucopyranose ([(18)F]FEDL) for detection of less than 3 mm orthotopic xenografts of L3.
View Article and Find Full Text PDF