The adrenal gland is a multiendocrine organ with a steroidogenic mesenchymal cortex and an inner catecholamine-producing medulla of neuroendocrine origin. After embryonic development, this plastic organ undergoes a functional postnatal remodeling. Elucidating these complex processes is pivotal for understanding the early bases of functional endocrine disorders and tumors affecting the mature gland.
View Article and Find Full Text PDFPurpose: GLP-1 receptor agonists are antidiabetic drugs currently used in the therapy of type 2 diabetes. Despite several in vitro and in vivo animal studies suggesting a beneficial effect of GLP-1 analogues on bone, in humans their skeletal effects are not clear and clinical studies report conflicting results.
Methods: We differentiated human mesenchymal stromal cells (hMSC) toward the adipogenic and the osteoblastic lineages, analysing the effect of Exendin-4 (EXE) before, during and after specific differentiations.
What is the central question of this study? Hyponatraemia, an electrolyte disorder encountered in hospitalized patients, can cause neurological symptoms usually attributed to a reduction in plasma osmolarity. Here, we investigated whether low [Na(+) ] per se can cause neuronal changes independent of osmolarity, focusing on involvement of the Na(+) -Ca(2+) exchanger. What is the main finding and its importance? We show that hyponatraemia per se causes alterations of neuronal properties.
View Article and Find Full Text PDFExendin-4 is a molecule currently used, in its synthetic form exenatide, for the treatment of type 2 diabetes mellitus. Exendin-4 binds and activates the Glucagon-Like Peptide-1 Receptor (GLP-1R), thus inducing insulin release. More recently, additional biological properties have been associated to molecules that belong to the GLP-1 family.
View Article and Find Full Text PDFThere is evidence that chronic hyponatremia, even when mild, may cause neurological signs and symptoms. These have been traditionally associated with water movement into nervous cells, as a result of the hypotonic state. The aim of the present study was to determine whether low extracellular sodium directly exerts negative effects on human neuronal cells, independently of reduced osmolality.
View Article and Find Full Text PDFExpert Rev Endocrinol Metab
May 2012
Alzheimer's disease (AD) is still an incurable condition. There is in vitro evidence that estrogens exert neuroprotective effects; however, their role in the treatment of AD is still controversial. Approximately 10 years ago, a new gene, named seladin-1 (for selective AD indicator-1), was identified and found to be downregulated in brain regions affected by AD.
View Article and Find Full Text PDFCell therapy is a promising approach for the treatment of neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. However, the presence of toxic aggregates in tissue raises the question of whether grafted stem cells are susceptible to amyloid toxicity before they differentiate into mature neurons. To address this question, we investigated the relative vulnerability of human mesenchymal stromal cells and their neuronally differentiated counterparts to Aβ(42) oligomers and whether susceptibility correlates with membrane GM1 content, a key player in oligomer toxicity.
View Article and Find Full Text PDFThe purpose of this study was to investigate the efficacy of Integra, an artificial dermal matrix used as a dermal template for skin regeneration, to form a multifunctional scaffold with human bone marrow-derived mesenchymal stem cells (hMSCs) and platelet-rich plasma (PRP) for tissue engineering and regenerative technology. First, we showed that PRP, used as a supplement for growth medium, represented an optimal substitute for animal serum as well as a source of multiple growth factors, was able to satisfactorily support cell viability and cell proliferation and influence stemness gene expression in hMSCs. Moreover, Integra appeared to be a suitable substrate for hMSCs colonization, as judged by two-photon microscopy combined with fluorescence lifetime imaging (FLIM) and confocal analysis.
View Article and Find Full Text PDFGlucagon-like peptide-1 (GLP-1) is an insulinotropic peptide with neurotrophic properties, as assessed in animal cell models. Exendin-4, a GLP-1 analogue, has been recently approved for the treatment of type 2 diabetes mellitus. The aim of this study was to morphologically, structurally, and functionally characterize the differentiating actions of exendin-4 using a human neuronal cell model (i.
View Article and Find Full Text PDFBackground Aims: Bone marrow (BM) is the most used source of hemopoietic stem cells (HSC) and mesenchymal stromal cells (MSC) in both hematologic settings and regenerative medicine. We compared the feasibility and reproducibility of two gravity separation techniques, with or without the use of a density gradient, in terms of both hematopoietic and mesenchymal human BM progenitors.
Methods: A total of 16 BM samples was processed to obtain mononuclear cells (MNC) and buffy coats (BC).
Adipose tissue is a dynamic endocrine organ with a central role in metabolism regulation. Functional differences in adipose tissue seem associated with the regional distribution of fat depots, in particular in subcutaneous and visceral omental pads. Here, we report for the first time the isolation of human adipose-derived adult stem cells from visceral omental and subcutaneous fat (V-ASCs and S-ASCs, respectively) from the same subject.
View Article and Find Full Text PDFIn 2000 a new gene, i.e. seladin-1 (for selective Alzheimer's disease indicator-1) was identified and found to be down regulated in vulnerable brain regions in Alzheimer's disease.
View Article and Find Full Text PDFNeuroblastoma (NB) is the most common extracranial tumor in children and accounts for around 15% of all paediatric oncology deaths. The treatment of NB includes surgery, chemotherapy, and radiotherapy. Unfortunately, most children with NB present with advanced disease, and more than 60% of patients with high-risk features will have a poor prognosis despite intensive therapy.
View Article and Find Full Text PDFEstrogen exerts neuroprotective effects and reduces beta-amyloid accumulation in models of Alzheimer's disease (AD). A few years ago, a new neuroprotective gene, i.e.
View Article and Find Full Text PDFDHCR24/seladin-1, a crucial enzyme in sterol synthesis, is of lower abundance in brain areas affected by Alzheimer's disease. While high levels of DHCR24/seladin-1 exert antiapoptotic function by conferring resistance against oxidative stress, the molecular mechanism for this protective effect is not fully understood. Here we show that DHCR24/seladin-1 expression is up-regulated in an acute response and down-regulated in a chronic response to oxidative stress.
View Article and Find Full Text PDFSeladin-1 (SELective Alzheimer's Disease INdicator-1) is an anti-apoptotic gene, which is down-regulated in brain regions affected by Alzheimer's disease (AD). In addition, seladin-1 catalyzes the conversion of desmosterol into cholesterol. Disruption of cholesterol homeostasis in neurons may increase cell susceptibility to toxic agents.
View Article and Find Full Text PDFContext: Seladin-1 (from selective Alzheimer's disease indicator-1) is a recently discovered gene that has been found to be down-regulated in brain regions affected by Alzheimer's disease. Seladin-1 effectively protects neurons against beta-amyloid-mediated toxicity and prevents apoptosis via inhibition of the activation of caspase-3, a key mediator of the apoptotic cascade. Although seladin-1 is expressed in the pituitary gland, no study addressed the expression or the function of this gene in pituitary adenomas.
View Article and Find Full Text PDFAccording to the fact that Alzheimer's disease (AD) is more common in postmenopausal women, estrogen treatment has been proposed. Experimental studies, still mostly performed using animal models, demonstrated that estrogen exerts neuroprotective effects. We previously established neuroblast long-term cell cultures from human fetal olfactory epithelium.
View Article and Find Full Text PDFSelective Alzheimer's disease indicator-1 (seladin-1) is a novel gene with antiapoptotic activity that is down-regulated in vulnerable brain regions in Alzheimer's disease. This gene encodes 3-beta-hydroxysterol Delta-24-reductase (DHCR24), which converts desmosterol into cholesterol. In the adrenal cortex, increased expression of seladin-1/DHCR24, which appears to be modulated by ACTH, has been recently reported in cortisol-secreting adenomas, compared with the adjacent atrophic tissue.
View Article and Find Full Text PDF