The exchange of molecules between different physical or chemical environments due to diffusion or chemical transformations has a crucial role in a plethora of fundamental processes such as breathing, protein folding, chemical reactions and catalysis. Here, we introduce a method for a single-scan, ultrafast NMR analysis of molecular exchange based on the diffusion coefficient contrast. The method shortens the experiment time by one to four orders of magnitude.
View Article and Find Full Text PDFThis study has two goals. First, the electric field gradient (EFG) present in the liquid-crystalline phases of ferroelectric FELIX-R&D is determined using NMR spectroscopy of noble gases Ne and Xe. The Ne and Xe NMR spectra were recorded over a temperature range, which covers all the mesophases of FELIX-R&D: nematic N, smectic A, and smectic C.
View Article and Find Full Text PDFUltrafast Laplace NMR (UF-LNMR), which is based on the spatial encoding of multidimensional data, enables one to carry out 2D relaxation and diffusion measurements in a single scan. Besides reducing the experiment time to a fraction, it significantly facilitates the use of nuclear spin hyperpolarization to boost experimental sensitivity, because the time-consuming polarization step does not need to be repeated. Here we demonstrate the usability of hyperpolarized UF-LNMR in the context of cell metabolism, by investigating the conversion of pyruvate to lactate in the cultures of mouse 4T1 cancer cells.
View Article and Find Full Text PDFWe demonstrate the ability of multidimensional Laplace NMR (LNMR), comprising relaxation and diffusion experiments, to reveal essential information about microscopic phase structures and dynamics of ionic liquids that is not observable using conventional NMR spectroscopy or other techniques.
View Article and Find Full Text PDFSomatic embryogenesis (SE) is considered as the most-effective method for vegetative propagation of Norway spruce (Picea abies L. Karst). For mass propagation, a cryopreservation method able to handle large numbers of embryogenic tissues (ETs) reliably and at low costs is needed.
View Article and Find Full Text PDFStandard diffusion NMR measurements require the repetition of the experiment multiple times with varying gradient strength or diffusion delay. This makes the experiment time-consuming and restricts the use of hyperpolarized substances to boost sensitivity. We propose a novel single-scan diffusion experiment, which is based on spatial encoding of two-dimensional data, employing the spin-echoes created by two successive adiabatic frequency-swept chirp π pulses.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2016
Laplace NMR (LNMR) consists of relaxation and diffusion measurements providing detailed information about molecular motion and interaction. Here we demonstrate that ultrafast single- and multidimensional LNMR experiments, based on spatial encoding, are viable with low-field, single-sided magnets with an inhomogeneous magnetic field. This approach shortens the experiment time by one to two orders of magnitude relative to traditional experiments, and increases the sensitivity per unit time by a factor of three.
View Article and Find Full Text PDFTraditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart.
View Article and Find Full Text PDFNuclear spin-lattice (T1) and spin-spin (T2) relaxation times provide versatile information about the dynamics and structure of substances, such as proteins, polymers, porous media, and so forth. Multidimensional experiments increase the information content and resolution of NMR relaxometry, but they also multiply the measurement time. To overcome this issue, we present an efficient strategy for a single-scan measurement of a 2D T1-T2 correlation map.
View Article and Find Full Text PDFVelocity distributions (so-called propagators) with two-dimensional spatial resolution inside a chemical micromixer were measured by pulsed-field-gradient spin-echo (PGSE) nuclear magnetic resonance (NMR). A surface coil matching the volume of interest was built to enhance the signal-to-noise ratio. This enabled the acquisition of velocity maps with a very high spatial resolution of 29 μm × 39 μm.
View Article and Find Full Text PDFA systematic study of the degree of molecular ordering and swelling of different nanocellulose model films has been conducted. Crystalline cellulose II surfaces were prepared by spin-coating of the precursor cellulose solutions onto oxidized silicon wafers before regeneration in water or by using the Langmuir-Schaefer (LS) technique. Amorphous cellulose films were also prepared by spin-coating of a precursor cellulose solution onto oxidized silicon wafers.
View Article and Find Full Text PDFDeuterium Quadrupole Coupling Constant (DQCC) in benzene was determined both experimentally by Nuclear Magnetic Resonance spectroscopy in Liquid Crystalline solutions (LC NMR) and theoretically by ab initio electronic structure calculations. DQCCs were measured for benzene-d(1) and 1,3,5-benzene-d(3) using several different liquid crystalline solvents and taking vibrational and deformational corrections into account in the analysis of experimental dipolar couplings, used to determine the orientational order parameter of the dissolved benzene. The experimental DQCC results for the isotopomers benzene-d(1) and 1,3,5-benzene-d(3) are found to be 187.
View Article and Find Full Text PDFThe velocity distribution of liquid flowing in a commercial micromixer has been determined directly by using pulsed-field gradient NMR. Velocity maps with a spatial resolution of 29 microm x 43 microm were obtained by combining standard imaging gradient units with a homebuilt rectangular surface coil matching the mixer geometry. The technique provides access to mixers and reactors of arbitrary shape regardless of optical transparency.
View Article and Find Full Text PDF