British Columbia (BC) is the lead producer of sweet cherries in Canada with more than 2,000 ha in production and a farm gate value of over CAD$100 million annually. Since 2010, an outbreak of little cherry disease caused by Little cherry virus 1 (LChV1) and Little cherry virus 2 (LChV2), as well as X-disease (XD) caused by 'Candidatus Phytoplasma pruni' has caused significant economic losses in neighboring Washington State (WA), USA. LChV1 and LChV2 have long been known to occur in BC (Theilmann et al.
View Article and Find Full Text PDFTwo species of larval parasitoids of the globally invasive fruit pest, Drosophila suzukii (Diptera: Drosophilidae), Leptopilina japonica, and Ganaspis brasiliensis (both Hymenoptera: Figitidae), were detected in British Columbia, Canada in 2016 and 2019, respectively. Both are presumed to have been unintentionally introduced from Asia; however, the extent of their establishment across different habitats with diverse host plants used by D. suzukii was unclear.
View Article and Find Full Text PDFSpotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), was monitored from 2010 to 2014 in 314-828 sites located in interior fruit-growing regions of OR and WA, United States, and BC, Canada, using traps baited with apple cider vinegar or sugar-water-yeast. Seasonal population dynamics and sex ratios were summarized for berry, cherry, stone fruit, grape, non-crop host plants, non-host sites, and for conventional IPM, certified organic, backyard, and feral sites, by region and year. Overwintering was detected in all regions and years, despite winter temperatures below -17°C.
View Article and Find Full Text PDFIt has been hypothesized that the success of a biological control introduction is, in part, dependent on the ability of the control agent to become established in its new environment or to its new population of hosts through local adaptation. Despite this, few studies have investigated the influence of the recent coevolutionary history of pest species and natural enemies on the efficacy of biological control agents, especially for agents that are mass-reared for release in agriculture. We investigate the evolutionary potential of a biological control agent Aphidius ervi to adapt to a key pest species, the foxglove aphid Aulacorthum solani, through components essential to the evolution of parasitoid virulence.
View Article and Find Full Text PDF