Publications by authors named "Susann Zilkenat"

Background And Objectives: Plasmodium species are naturally transmitted by Anopheles mosquitos. The parasite infects red blood cells (RBCs) and can be transfused with blood products. In non-endemic areas, the main risk of infection arises from travellers coming back and people immigrating from malaria-endemic regions.

View Article and Find Full Text PDF

Background And Objectives: Platelet concentrates (PC) are stored at 20-24°C to maintain platelet functionality, which may promote growth of contaminant bacteria. Alternatively, cold storage of PC limits bacterial growth; however, data related to proliferation of psychotrophic species in cold-stored PC (CSP) are scarce, which is addressed in this study.

Materials And Methods: Eight laboratories participated in this study with a pool/split approach.

View Article and Find Full Text PDF

Bacterial protein secretion systems serve to translocate substrate proteins across up to three biological membranes, a task accomplished by hydrophobic, membrane-spanning macromolecular complexes. The overexpression, purification, and biochemical characterization of these complexes is often difficult, thus impeding progress in understading structure and function of these systems. Blue native (BN) polyacrylamide gel electrophoresis (PAGE) allows for the investigation of these transmembrane complexes right from their originating membranes, without the need of long preparative steps, and is amenable to the parallel characterization of a number of samples under near-native conditions.

View Article and Find Full Text PDF

Bacterial protein secretion systems serve to translocate substrate proteins across up to three biological membranes, a task accomplished by hydrophobic, membrane-spanning macromolecular complexes. The overexpression, purification, and biochemical characterization of these complexes is often difficult, impeding progress in understanding the structure and function of these systems. Blue native (BN) polyacrylamide gel electrophoresis (PAGE) allows for the investigation of these transmembrane complexes right from their originating membranes, without the need for long preparative steps, and is amenable to the parallel characterization of a number of samples under near-native conditions.

View Article and Find Full Text PDF

Bacterial type III protein secretion systems inject effector proteins into eukaryotic host cells in order to promote survival and colonization of Gram-negative pathogens and symbionts. Secretion across the bacterial cell envelope and injection into host cells is facilitated by a so-called injectisome. Its small hydrophobic export apparatus components SpaP and SpaR were shown to nucleate assembly of the needle complex and to form the central "cup" substructure of a Salmonella Typhimurium secretion system.

View Article and Find Full Text PDF

Gaining knowledge of the structural makeup of protein complexes is critical to advance our understanding of their formation and functions. This task is particularly challenging for transmembrane protein complexes, and grows ever more imposing with increasing size of these large macromolecular structures. The last 10 years have seen a steep increase in solved high-resolution membrane protein structures due to both new and improved methods in the field, but still most structures of large transmembrane complexes remain elusive.

View Article and Find Full Text PDF

Precisely knowing the stoichiometry of their components is critical for investigating structure, assembly, and function of macromolecular machines. This has remained a technical challenge in particular for large, hydrophobic membrane-spanning protein complexes. Here, we determined the stoichiometry of a type III secretion system of Salmonella enterica serovar Typhimurium using two complementary protocols of gentle complex purification combined with peptide concatenated standard and synthetic stable isotope-labeled peptide-based mass spectrometry.

View Article and Find Full Text PDF

The reliable detection of protein-protein interactions by affinity purification mass spectrometry (AP-MS) is crucial for the understanding of biological processes. Quantitative information can be used to separate truly interacting proteins from false-positives by contrasting counts of proteins binding to specific baits with counts of negative controls. Several approaches have been proposed for computing scores for potential interaction proteins, for example, the commonly used SAINT software.

View Article and Find Full Text PDF