Publications by authors named "Susann Rahmig"

Clonal hematopoiesis (CH) arises when hematopoietic stem cells (HSCs) acquire mutations, most frequently in the DNMT3A and TET2 genes, conferring a competitive advantage through mechanisms that remain unclear. To gain insight into how CH mutations enable gradual clonal expansion, we used single-cell multi-omics with high-fidelity genotyping on human CH bone marrow (BM) samples. Most of the selective advantage of mutant cells occurs within HSCs.

View Article and Find Full Text PDF

The bone marrow (BM) microenvironment, also called the BM niche, is essential for the maintenance of fully functional blood cell formation (hematopoiesis) throughout life. Under physiologic conditions the niche protects hematopoietic stem cells (HSCs) from sustained or overstimulation. Acute or chronic stress deregulates hematopoiesis and some of these alterations occur indirectly via the niche.

View Article and Find Full Text PDF

Humanized mouse models have become increasingly valuable tools to study human hematopoiesis and infectious diseases. However, human T-cell differentiation remains inefficient. We generated mice expressing human interleukin-7 (IL-7), a critical growth and survival factor for T cells, under the control of murine IL-7 regulatory elements.

View Article and Find Full Text PDF

Janus kinases (JAKs) mediate responses to cytokines, hormones and growth factors in haematopoietic cells. The JAK gene JAK2 is frequently mutated in the ageing haematopoietic system and in haematopoietic cancers. JAK2 mutations constitutively activate downstream signalling and are drivers of myeloproliferative neoplasm (MPN).

View Article and Find Full Text PDF

These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells.

View Article and Find Full Text PDF

Large-scale RNAi screens are a powerful approach to identify functions of genes in a cell-type-specific manner. For model organisms, genetically identical (isogenic) cells from different cell types are readily available, making comparative studies meaningful. However, large-scale screens in isogenic human primary cells remain challenging.

View Article and Find Full Text PDF

Background: Transplantation of human hematopoietic stem cells into immunodeficient mice provides a powerful in vivo model system to gain functional insights into hematopoietic differentiation. So far, it remains unclear if epigenetic changes of normal human hematopoiesis are recapitulated upon engraftment into such "humanized mice." Mice have a much shorter life expectancy than men, and therefore, we hypothesized that the xenogeneic environment might greatly accelerate the epigenetic clock.

View Article and Find Full Text PDF

Human erythro-megakaryopoiesis does not occur in humanized mouse models, preventing the in vivo analysis of human hematopoietic stem cell (HSC) differentiation into these lineages in a surrogate host. Here we show that stably engrafted KIT-deficient NOD/SCID Il2rgKit (NSGW41) mice support much improved human erythropoiesis and platelet formation compared with irradiated NSG recipients. Considerable numbers of human erythroblasts and mature thrombocytes are present in the bone marrow and blood, respectively.

View Article and Find Full Text PDF

Initial pathway alternations required for pathogenesis of human acute myeloid leukemia (AML) are poorly understood. Here we reveal that removal of glycogen synthase kinase-3α (GSK-3α) and GSK-3β dependency leads to aggressive AML. Although GSK-3α deletion alone has no effect, GSK-3β deletion in hematopoietic stem cells (HSCs) resulted in a pre-neoplastic state consistent with human myelodysplastic syndromes (MDSs).

View Article and Find Full Text PDF
Article Synopsis
  • Researchers need a better host model to study human hematopoietic stem cells (HSCs) due to limitations with current options.
  • They developed immune-deficient mice with mutations in the Kit receptor that enhance the engraftment of human HSCs without requiring irradiation.
  • The study reveals that these Kit mutations allow for sustained human HSC transplant success and help identify different functional subpopulations of HSCs, indicating this approach has wide potential for future research.
View Article and Find Full Text PDF

The serine protease granzyme B (GzmB) is stored in the granules of cytotoxic T and NK cells and facilitates immune-mediated destruction of virus-infected cells. In this study, we use genetic tools to report novel roles for GzmB as an important regulator of hematopoietic stem cell (HSC) function in response to stress. HSCs lacking the GzmB gene show improved bone marrow (BM) reconstitution associated with increased HSC proliferation and mitochondrial activity.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionk4fsbf5c4d8hvnjne1ki05gh8dnq7eor): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once