Publications by authors named "Susann Hau"

Experimental transplantation of human umbilical cord blood (hUCB) mononuclear cells (MNCs) in rodent stroke models revealed the therapeutic potential of these cells. However, effective cells within the heterogeneous MNC population and their modes of action are still under discussion. MNCs and MNC fractions enriched (CD34(+)) or depleted (CD34(-)) for CD34-expressing stem/progenitor cells were isolated from hUCB.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) of magnetically labeled stem cells has become a valuable tool in the understanding and evaluation of experimental stem cell-based therapies of degenerative central nervous system disorders. This comprehensive study assesses the impact of magnetic labeling of both human and rodent stem cell-containing populations on multiple biologic parameters as maintenance of stemness and oxidative stress levels. Cells were efficiently magnetically labeled with very small superparamagnetic iron oxide particles.

View Article and Find Full Text PDF

Background: The therapeutic capacity of human umbilical cord blood mononuclear cells (HUCB-MNC) and stem cells derived thereof is documented in animal models of focal cerebral ischemia, while mechanisms behind the reduction of lesion size and the observed improvement of behavioral skills still remain poorly understood.

Methods: A human in vitro model of neuronal hypoxia was used to address the impact of total HUCB-MNC (tMNC), a stem cell enriched fraction (CD133+, 97.38% CD133-positive cells) and a stem cell depleted fraction (CD133-, 0.

View Article and Find Full Text PDF

Background: One of the most promising options for treatment of stroke using adult stem cells are human umbilical cord blood (HUCB) cells that were already approved for therapeutic efficacy in vivo. However, complexity of animal models has thus far limited the understanding of beneficial cellular mechanisms. To address the influence of HUCB cells on neuronal tissue after stroke we established and employed a human in vitro model of neuronal hypoxia using fully differentiated vulnerable SH-SY5Y cells.

View Article and Find Full Text PDF