Publications by authors named "Susana de-Vega"

Article Synopsis
  • Pathogenic bacteria, like Streptococcus pyogenes, need to acquire iron for growth, making their metal import systems potential targets for new antibiotics.
  • S. pyogenes uses the FtsABCD iron uptake system to transport iron from hydroxamate siderophores, despite not being able to produce these compounds itself.
  • Research showed that the protein FtsB can bind various siderophores (like ferrichrome and ferrioxamine) with high affinity, indicating S. pyogenes can exploit these other microorganisms' iron sources through specific interactions.
View Article and Find Full Text PDF

Tooth formation is a process tightly regulated by reciprocal interactions between epithelial and mesenchymal tissues. These epithelial-mesenchyme interactions regulate the expression of target genes via transcription factors. Among the regulatory elements governing this process, Epiprofin/Sp6 is a zinc finger transcription factor which is expressed in the embryonic dental epithelium and in differentiating pre-odontoblasts.

View Article and Find Full Text PDF

Osteophytes in osteoarthritis (OA) joints contribute to restriction of joint movement, joint pain, and OA progression, but little is known about osteophyte regulators. Examination of gene expression related to cartilage extracellular matrix, endochondral ossification, and growth factor signaling in articular cartilage and osteophytes obtained from OA knee joints showed that several genes such as COL1A1, VCAN, BGLAP, BMP8B, RUNX2, and SOST were overexpressed in osteophytes compared with articular cartilage. Ratios of mesenchymal stem/progenitor cells, which were characterized by co-expression of CD105 and CD166, were significantly higher in osteophytic cells than articular cells.

View Article and Find Full Text PDF

Destruction of articular cartilage in osteoarthritis (OA) is initiated by depletion of the hyaluronan (HA)-aggrecan network, followed by degradation of the collagen fibrils. Previously, we reported the implications of HA-binding protein involved in HA depolymerization (HYBID), alias cell migration-inducing protein (CEMIP) and KIAA1199, for HA degradation. However, transmembrane protein 2 (TMEM2), which is ~ 50% homologous to HYBID, was discovered as another hyaluronidase, but their expression and regulation by OA chondrocytes remain elusive.

View Article and Find Full Text PDF
Article Synopsis
  • * In OA tissues, ADAMTS4 is significantly upregulated compared to normal tissues, particularly in response to cytokines like IL-1α and TNF-α.
  • * Various inhibitors can block the enhanced expression of ADAMTS4, revealing complex signaling pathways involving TAK1, NF-κB, and ALK5/Smad2/3 in regulating this process.
View Article and Find Full Text PDF

Hyaluronan (HA)-binding protein involved in HA depolymerization (HYBID) is involved in cartilage destruction via HA depolymerization in human knee osteoarthritis. However, the role of HYBID in the progression of osteoarthritis remain elusive. This study sought to examine whether genetic depletion of Hybid could suppress surgically induced osteoarthritis of mouse knee joints.

View Article and Find Full Text PDF

Glioblastoma is the most malignant tumor of the brain associated with poor prognosis and outcome, and hence there is an urgent need to develop novel treatments for glioblastoma. In this study, we focused on hyaluronan binding protein (HYBID, as known as CEMIP/KIAA1199), a protein involved in hyaluronan depolymerization in chondrocytes and synoviocytes. We previously reported that Hybid-deficient (KO) mice show accumulation of hyaluronan in the brain, and memory impairment.

View Article and Find Full Text PDF
Article Synopsis
  • Dental enamel, the hardest substance in the body, is formed by matrices secreted from ameloblasts, and its mineralization is closely linked to the maturation of these cells and ion balance.
  • Disruption in the processes regulating enamel can lead to hypomineralization, and the study highlights the importance of a specific G protein-coupled receptor (GPCR) in this process.
  • Research using knockout mice and dental cell lines shows that this GPCR is essential for proper ion transport and pH balance in enamel formation, indicating a significant role in both enamel mineralization and ectodermal organ development.
View Article and Find Full Text PDF

Hyaluronan (HA), a major component of the extracellular matrix in vertebrate tissues, provides structural and functional integrity to cells and organs. Biological functions of HA are dependent on the molecular size of HA and the interaction with a wide range of HA-binding proteins, i.e.

View Article and Find Full Text PDF

Cell migration-inducing hyaluronidase 1 (CEMIP), also known as hyaluronan (HA)-binding protein involved in HA depolymerization (HYBID), plays a role in HA degradation. CEMIP2, also known as transmembrane protein 2 (TMEM2), possessing a sequence similarity with HYBID, is reported as a hyaluronidase in mice. However, the expression of these molecules in osteoarthritic synovium and their involvement in HA degradation in synovial fluid (SF) from patients with knee osteoarthritis remain elusive.

View Article and Find Full Text PDF

Wet age-related macular degeneration (AMD) and diabetic retinopathy are the leading causes of blindness through increased angiogenesis. Although VEGF-neutralizing proteins provide benefit, inconsistent responses indicate a need for new therapies. We previously identified the Fibulin-7 C-terminal fragment (Fbln7-C) as an angiogenesis inhibitor in vitro.

View Article and Find Full Text PDF

Cell adhesion between oligodendrocytes and neuronal axons is a critical step for myelination that enables the rapid propagation of action potential in the central nervous system. Here, we show that the transmembrane protein teneurin-4 plays a role in the cell adhesion required for the differentiation of oligodendrocytes. We found that teneurin-4 formed molecular complexes with all of the four teneurin family members and promoted cell-cell adhesion.

View Article and Find Full Text PDF

Glioblastoma (GBM) is pathologically characterized by highly malignant neoplastic cells, focal necrosis and aberrant blood vessels composed of disorganized endothelial cells and pericytes. The recent cancer microarray database revealed upregulation of fibulin-7 (Fbln7), a member of the fibulin family, but provided no information on the tissue localization or biological function. In the present study, we demonstrated that Fbln7 is markedly overexpressed by the GBM tissue among astrocytic tumors, and immunolocalized mainly to endothelial cells and pericytes of the glomeruloid and hypertrophied microvessels.

View Article and Find Full Text PDF

Angiogenesis is crucial for tissue development and homeostasis; however, excessive angiogenesis can lead to diseases, including arthritis and cancer metastasis. Some antiangiogenic drugs are available, but side effects remain problematic. Thus, alternative angiogenesis inhibition strategies are needed.

View Article and Find Full Text PDF

The development of ectodermal organs, such as teeth, requires epithelial-mesenchymal interactions. Basic helix-loop-helix (bHLH) transcription factors regulate various aspects of tissue development, and we have previously identified a bHLH transcription factor, AmeloD, from a tooth germ cDNA library. Here, we provide both and evidence that AmeloD is important in tooth development.

View Article and Find Full Text PDF

Fibulin-7 (Fbln7) has been identified as the latest member of the fibulin family of secreted glycoproteins in developing teeth, functioning as a cell adhesion molecule and interacting with other matrix proteins, receptors, and growth factors. More recently, we have shown that the C-terminal Fbln7 fragment (Fbln7-C) has antiangiogenic activity in vitro. Fbln7 is also expressed in immune-privileged tissues, such as eye and placenta, but its functional significance is unknown.

View Article and Find Full Text PDF

The synchronization of cell proliferation and cytodifferentiation between dental epithelial and mesenchymal cells is required for the morphogenesis of teeth with the correct functional shapes and optimum sizes. Epiprofin (Epfn), a transcription factor belonging to the Sp family, regulates dental epithelial cell proliferation and is essential for ameloblast and odontoblast differentiation. Epfn deficiency results in the lack of enamel and ironically the formation of extra teeth.

View Article and Find Full Text PDF

Despite the research done on pathological angiogenesis, there is still a need for the development of new therapies against angiogenesis-related diseases. Fibulin-7 (Fbln7) is a member of the extracellular matrix fibulin protein family. The Fbln7 C-terminal fragment, Fbln7-C, binds to endothelial cells and inhibits their tube formation in culture.

View Article and Find Full Text PDF

Perlecan is a major heparan sulfate proteoglycan found in the subendothelial extracellular matrix of the vascular wall. The aim of this study was to investigate the role of perlecan in the regulation of vascular tone. A previously developed conditional perlecan-deficient mouse model was used to measure changes in the isometric force of isolated aortic rings.

View Article and Find Full Text PDF

Laminin α1 (LAMA1), a subunit of the laminin-111 basement membrane component, has been implicated in various biological functions in vivo and in vitro. Although LAMA1 is present in kidney, its roles in the kidney are unknown because of early embryonic lethality. Herein, we used a viable conditional knockout mouse model with a deletion of Lama1 in the epiblast lineage (Lama1(CKO)) to study the role of LAMA1 in kidney development and function.

View Article and Find Full Text PDF

We have previously demonstrated that fibulin-7 (Fbln7) is expressed in teeth by pre-odontoblast and odontoblast cells, localized in the basement membrane and dentin matrices, and is an adhesion molecule for dental mesenchyme cells and odontoblasts. Fbln7 is also expressed in blood vessels by endothelial cells. In this report, we show that a recombinant C-terminal Fbln7 fragment (Fbln7-C) bound to Human Umbilical Vein Endothelial Cells (HUVECs) but did not promote cell spreading and actin stress fiber formation.

View Article and Find Full Text PDF

In the adult subventricular zone (neurogenic niche), neural stem cells double-positive for two markers of subsets of neural stem cells in the adult central nervous system, glial fibrillary acidic protein and CD133, lie in proximity to fractones and to blood vessel basement membranes, which contain the heparan sulfate proteoglycan perlecan. Here, we demonstrate that perlecan deficiency reduces the number of both GFAP/CD133-positive neural stem cells in the subventricular zone and new neurons integrating into the olfactory bulb. We also show that FGF-2 treatment induces the expression of cyclin D2 through the activation of the Akt and Erk1/2 pathways and promotes neurosphere formation in vitro.

View Article and Find Full Text PDF

Teneurin-4 (Ten-4), a transmembrane protein, is highly expressed in the central nervous system; however, its cellular and molecular function in neuronal differentiation remains unknown. In this study, we aimed to elucidate the function of Ten-4 in neurite outgrowth. Ten-4 expression was induced during neurite outgrowth of the neuroblastoma cell line Neuro-2a.

View Article and Find Full Text PDF

Myelination is essential for proper functioning of the CNS. In this study, we have identified a mouse mutation, designated furue, which causes tremors and hypomyelination in the CNS, particularly in the spinal cord, but not in the sciatic nerve of the PNS. In the spinal cord of the furue mice, myelination of small-diameter axons was dramatically reduced, and differentiation of oligodendrocytes, the myelin-forming cells in the CNS, was inhibited.

View Article and Find Full Text PDF