Integrating diverse types of biological data is essential for a holistic understanding of cancer biology, yet it remains challenging due to data heterogeneity, complexity, and sparsity. Addressing this, our study introduces an unsupervised deep learning model, MOSA (Multi-Omic Synthetic Augmentation), specifically designed to integrate and augment the Cancer Dependency Map (DepMap). Harnessing orthogonal multi-omic information, this model successfully generates molecular and phenotypic profiles, resulting in an increase of 32.
View Article and Find Full Text PDFTumor heterogeneity is a challenge to designing effective and targeted therapies. Glioma-type identification depends on specific molecular and histological features, which are defined by the official World Health Organization (WHO) classification of the central nervous system (CNS). These guidelines are constantly updated to support the diagnosis process, which affects all the successive clinical decisions.
View Article and Find Full Text PDFIn the healthcare sector, resorting to big data and advanced analytics is a great advantage when dealing with complex groups of patients in terms of comorbidities, representing a significant step towards personalized targeting. In this work, we focus on understanding key features and clinical pathways of patients with multimorbidity suffering from Dementia. This disease can result from many heterogeneous factors, potentially becoming more prevalent as the population ages.
View Article and Find Full Text PDFColorectal cancer (CRC) is the third most common cancer and the second most deathly worldwide. It is a very heterogeneous disease that can develop via distinct pathways where metastasis is the primary cause of death. Therefore, it is crucial to understand the molecular mechanisms underlying metastasis.
View Article and Find Full Text PDFDiarrhetic Shellfish Poisoning (DSP) is an acute intoxication caused by the consumption of contaminated shellfish, which is common in many regions of the world. To safeguard human health, most countries implement programs focused on the surveillance of toxic phytoplankton abundance and shellfish toxicity levels, an effort that can be complemented by a deeper understanding of the underlying phenomena. In this work, we identify patterns of seasonality in shellfish toxicity across the Portuguese coast and analyse time-lagged correlations between this toxicity and various potential risk factors.
View Article and Find Full Text PDFClear cell renal cell carcinoma (ccRCC) is the most common subtype of RCC showing a significant percentage of mortality. One of the priorities of kidney cancer research is to identify RCC-specific biomarkers for early detection and screening of the disease. With the development of high-throughput technology, it is now possible to measure the expression levels of thousands of genes in parallel and assess the molecular profile of individual tumors.
View Article and Find Full Text PDFThe increasing availability of metabolomic data and their analysis are improving the understanding of cellular mechanisms and how biological systems respond to different perturbations. Currently, there is a need for novel computational methods that facilitate the analysis and integration of increasing volume of available data. In this paper, we present Totoro a new constraint-based approach that integrates quantitative non-targeted metabolomic data of two different metabolic states into genome-wide metabolic models and predicts reactions that were most likely active during the transient state.
View Article and Find Full Text PDFThe extraction of novel information from omics data is a challenging task, in particular, since the number of features (e.g. genes) often far exceeds the number of samples.
View Article and Find Full Text PDFBackground: Rheumatic diseases are one of the most common chronic diseases worldwide. Among them, spondyloarthritis (SpA) is a group of highly debilitating diseases, with an early onset age, which significantly impacts patients' quality of life, health care systems, and society in general. Recent treatment options consist of using biologic therapies, and establishing the most beneficial option according to the patients' characteristics is a challenge that needs to be overcome.
View Article and Find Full Text PDFBackground: Longitudinal gene expression analysis and survival modeling have been proved to add valuable biological and clinical knowledge. This study proposes a novel framework to discover gene signatures and patterns in a high-dimensional time series transcriptomics data and to assess their association with hospital length of stay.
Methods: We investigated a longitudinal and high-dimensional gene expression dataset from 168 blunt-force trauma patients followed during the first 28 days after injury.
Network science has long been recognized as a well-established discipline across many biological domains. In the particular case of cancer genomics, network discovery is challenged by the multitude of available high-dimensional heterogeneous views of data. Glioblastoma (GBM) is an example of such a complex and heterogeneous disease that can be tackled by network science.
View Article and Find Full Text PDFThe human gut microbiota performs functions that are essential for the maintenance of the host physiology. However, characterizing the functioning of microbial communities in relation to the host remains challenging in reference-based metagenomic analyses. Indeed, as taxonomic and functional analyses are performed independently, the link between genes and species remains unclear.
View Article and Find Full Text PDFColorectal cancer (CRC) is one of the leading causes of mortality and morbidity in the world. Being a heterogeneous disease, cancer therapy and prognosis represent a significant challenge to medical care. The molecular information improves the accuracy with which patients are classified and treated since similar pathologies may show different clinical outcomes and other responses to treatment.
View Article and Find Full Text PDFBrief Bioinform
January 2021
The development of new molecular and cell technologies is having a significant impact on the quantity of data generated nowadays. The growth of omics databases is creating a considerable potential for knowledge discovery and, concomitantly, is bringing new challenges to statistical learning and computational biology for health applications. Indeed, the high dimensionality of these data may hamper the use of traditional regression methods and parameter estimation algorithms due to the intrinsic non-identifiability of the inherent optimization problem.
View Article and Find Full Text PDFBackground: In this paper, we explore the concept of multi-objective optimization in the field of metabolic engineering when both continuous and integer decision variables are involved in the model. In particular, we propose a multi-objective model that may be used to suggest reaction deletions that maximize and/or minimize several functions simultaneously. The applications may include, among others, the concurrent maximization of a bioproduct and of biomass, or maximization of a bioproduct while minimizing the formation of a given by-product, two common requirements in microbial metabolic engineering.
View Article and Find Full Text PDFBMC Bioinformatics
February 2020
Background: Understanding cellular and molecular heterogeneity in glioblastoma (GBM), the most common and aggressive primary brain malignancy, is a crucial step towards the development of effective therapies. Besides the inter-patient variability, the presence of multiple cell populations within tumors calls for the need to develop modeling strategies able to extract the molecular signatures driving tumor evolution and treatment failure. With the advances in single-cell RNA Sequencing (scRNA-Seq), tumors can now be dissected at the cell level, unveiling information from their life history to their clinical implications.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
December 2019
Background: Patient stratification is a critical task in clinical decision making since it can allow physicians to choose treatments in a personalized way. Given the increasing availability of electronic medical records (EMRs) with longitudinal data, one crucial problem is how to efficiently cluster the patients based on the temporal information from medical appointments. In this work, we propose applying the Temporal Needleman-Wunsch (TNW) algorithm to align discrete sequences with the transition time information between symbols.
View Article and Find Full Text PDFBackground: Alignment-free (AF) sequence comparison is attracting persistent interest driven by data-intensive applications. Hence, many AF procedures have been proposed in recent years, but a lack of a clearly defined benchmarking consensus hampers their performance assessment.
Results: Here, we present a community resource (http://afproject.
Background: Breast and prostate cancers are typical examples of hormone-dependent cancers, showing remarkable similarities at the hormone-related signaling pathways level, and exhibiting a high tropism to bone. While the identification of genes playing a specific role in each cancer type brings invaluable insights for gene therapy research by targeting disease-specific cell functions not accounted so far, identifying a common gene signature to breast and prostate cancers could unravel new targets to tackle shared hormone-dependent disease features, like bone relapse. This would potentially allow the development of new targeted therapies directed to genes regulating both cancer types, with a consequent positive impact in cancer management and health economics.
View Article and Find Full Text PDFBackground: Joint models (JM) have emerged as a promising statistical framework to concurrently analyse survival data and multiple longitudinal responses. This is particularly relevant in clinical studies where the goal is to estimate the association between time-to-event data and the biomarkers evolution. In the context of oncological data, JM can indeed provide interesting prognostic markers for the event under study and thus support clinical decisions and treatment choices.
View Article and Find Full Text PDFBackground: Painful dysfunctional shoulders with irreparable rotator cuff tears (IRCTs) in active patients are a challenge. Arthroscopic superior capsular reconstruction (ASCR) is a new treatment option originally described using a fascia lata autograft harvested through an open approach. However, concerns about donor site morbidity have discouraged surgeons from using this type of graft.
View Article and Find Full Text PDFOver the last years, several genome-scale metabolic models (GEMs) and kinetic models of Escherichia coli were published. Their predictive performance varies according to the evaluation metric considered, the computational simulation methods used, and the type/quality of experimental data available. However, the GEM approach is often not compared with the kinetic modeling framework.
View Article and Find Full Text PDFCorrect classification of breast cancer subtypes is of high importance as it directly affects the therapeutic options. We focus on triple-negative breast cancer which has the worst prognosis among breast cancer types. Using cutting edge methods from the field of robust statistics, we analyze Breast Invasive Carcinoma transcriptomic data publicly available from The Cancer Genome Atlas data portal.
View Article and Find Full Text PDFBackground: Learning accurate models from 'omics data is bringing many challenges due to their inherent high-dimensionality, e.g. the number of gene expression variables, and comparatively lower sample sizes, which leads to ill-posed inverse problems.
View Article and Find Full Text PDF