Hepatocellular carcinoma is one of the most common cancers, and approximately 80% develop from cirrhotic livers. We have previously shown that the aspartate salt of adenosine prevents and reverses carbon tetrachloride-induced liver fibrosis in rats. Considering the hepatoprotective role of this adenosine derivative in fibrogenesis, we were interested in evaluating its effect in a hepatocarcinogenesis model induced by diethylnitrosamine in rats, where multinodular cancer is preceded by cirrhosis.
View Article and Find Full Text PDFWe have previously shown that adenosine and the aspartate salt of adenosine (IFC305) reverse pre-established CCl(4)-induced cirrhosis in rats. However, their molecular mechanism of action is not clearly understood. Hepatic stellate cells (HSC) play a pivotal role in liver fibrogenesis leading to cirrhosis, mainly through their activation, changing from a quiescent adipogenic state to a proliferative myofibrogenic condition.
View Article and Find Full Text PDFCirrhosis is a complex process that involves a dynamic modification of liver cell phenotype associated to gene expression changes. This study investigates the reversing capacity of an adenosine derivative compound (IFC305) on a rat model of liver cirrhosis and gene expression changes associated with it. Rats were treated with IFC305 or saline for 5 or 10 weeks after cirrhosis induction (CCl(4) treatment for 10 weeks).
View Article and Find Full Text PDF