The aim of this work is to study the micelle systems of amphotericin B (AmB) and surfactant sodium deoxycholate (NaDC) as possible formulations to treat brain fungal infections. Fungizone(®) and Ambisome(®) were used as AmB references. The particle size, aggregation state, toxicity and efficacy of AmB:NaDC micelles were studied with increasing proportions of NaDC.
View Article and Find Full Text PDFThis work aims to develop novel benznidazole (BZN) solid dispersions (SD) to improve its solubility and bioavailability properties. Low-substituted hydroxypropylcellulose (L-HPC) and sodium deoxycholate (NaDC) were evaluated as carriers. BZN solid dispersions containing different ratios of carrier were prepared by a freeze-drying process and characterized by SEM, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC) and dissolution studies.
View Article and Find Full Text PDFTo improve the efficacy of mebendazole (MBZ), a poorly water-soluble drug, MBZ solid dispersions containing different proportions of low-substituted hydroxypropylcellulose (L-HPC) were prepared by lyophilization process. The physical characteristics of recrystallized MBZ, and solid dispersions (SD) at different MBZ:L-HPC proportions were investigated in terms of morphology (scanning electron microscopy, SEM), powder X-ray diffraction (XRD), differential scanning calorimetry (DSC) and dissolution rate. The in vivo performance was assessed by anthelmintic activity studies against enteral (pre-adult) stage of Trichinella spiralis in mice.
View Article and Find Full Text PDF