Publications by authors named "Susana T Valente"

Background: HIV-1-associated neurocognitive impairment (HIV-1-NCI) is marked by ongoing and chronic neuroinflammation with loss and decline in neuronal function even when antiretroviral drug therapy (ART) successfully suppresses viral replication. Microglia, the primary reservoirs of HIV-1 in the central nervous system (CNS), play a significant role in maintaining this neuroinflammatory state. However, understanding how chronic neuroinflammation is generated and sustained by HIV-1, or impacted by ART, is difficult due to limited access to human CNS tissue.

View Article and Find Full Text PDF

Ongoing viral transcription from the reservoir of HIV-1 infected long-lived memory CD4 T cells presents a barrier to cure and associates with poorer health outcomes for people living with HIV, including chronic immune activation and inflammation. We previously reported that didehydro-cortistatin A (dCA), an HIV-1 Tat inhibitor, blocks HIV-1 transcription. Here, we examine the impact of dCA on host immune CD4 T-cell transcriptional and epigenetic states.

View Article and Find Full Text PDF

HIV-1 infection of human macrophages leads to the downmodulation of human mannose receptor 1 (hMRC1), a cell-surface glycoprotein that is involved in the host innate immune response. We previously reported that downmodulation of hMRC1 involves the transactivator of transcription (Tat)-dependent transcriptional silencing of the hMRC1 promoter. However, the inhibitory effect of Tat on hMRC1 transcription was indirect and involved inhibition of the transcriptional activator PU.

View Article and Find Full Text PDF

Despite remarkable progress, a cure for HIV-1 infection remains elusive. Rebound competent latent and transcriptionally active reservoir cells persevere despite antiretroviral therapy and rekindle infection due to inefficient proviral silencing. We propose a novel "block-lock-stop" approach, entailing long term durable silencing of viral expression towards an irreversible transcriptionally inactive latent provirus to achieve long term antiretroviral free control of the virus.

View Article and Find Full Text PDF

Purpose Of Review: This review highlights advances in HIV transcription and epigenetic latency mechanisms and outlines current therapeutic approaches to eliminate or block the HIV-1 latent reservoir.

Recent Findings: Novel host factors have been reported to modulate HIV-1 transcription and latency. Chromatin affinity purification strategies followed by mass spectrometry (ChAP-MS) identified the chaperone protein p32 to play an important role in HIV-1 transcriptional regulation via interactions with the viral transcriptional activator Tat.

View Article and Find Full Text PDF

HIV resistance to the Tat inhibitor didehydro-cortistatin A (dCA) in vitro correlates with higher levels of Tat-independent viral transcription and a seeming inability to enter latency, which rendered resistant isolates more susceptible to CTL-mediated immune clearance. Here, we investigated the ability of dCA-resistant viruses to replicate in vivo using a humanized mouse model of HIV infection. Animals were infected with WT or two dCA-resistant HIV-1 isolates in the absence of dCA and followed for 5 weeks.

View Article and Find Full Text PDF

HIV gene expression is modulated by the combinatorial activity of the HIV transcriptional activator, Tat, host transcription factors, and chromatin remodeling complexes. To identify host factors regulating HIV transcription, we used specific single-guide RNAs and endonuclease-deficient Cas9 to perform chromatin affinity purification of the integrated HIV promoter followed by mass spectrometry. The scaffold protein, p32, also called ASF/SF2 splicing factor-associated protein, was identified among the top enriched factors present in actively transcribing HIV promoters but absent in silenced ones.

View Article and Find Full Text PDF

Current antiretroviral therapy (ART) increases the survival of HIV-infected individuals, yet it is not curative. The major barrier to finding a definitive cure for HIV is our inability to identify and eliminate long-lived cells containing the dormant provirus, termed viral reservoir. When ART is interrupted, the viral reservoir ensures heterogenous and stochastic HIV viral gene expression, which can reseed infection back to pre-ART levels.

View Article and Find Full Text PDF

Hydroxychloroquine (HCQ), a drug used to treat lupus and malaria, was proposed as a treatment for SARS-coronavirus-2 (SARS-CoV-2) infection, albeit with controversy. In vitro, HCQ effectively inhibits viral entry, but its use in the clinic has been hampered by conflicting results. A better understanding of HCQ's mechanism of actions in vitro is needed.

View Article and Find Full Text PDF

Locally delivered pre-exposure prophylaxis (PrEP) has proven to be a promising strategy to combat Human immunodeficiency virus (HIV) transmission but several findings encountered toxicities or proved to be marginally effective in clinical settings. Therefore, innovative, multifunctional, and safer alternatives are being progressively investigated. Herein, we explored negatively charged carbohydrate, anionic pullulan (AP) as a rapidly soluble film-former and novel anti-HIV agent.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 responsible for COVID-19 remains a persistent threat to mankind, especially for the immunocompromised and elderly for which the vaccine may have limited effectiveness. Entry of SARS-CoV-2 requires a high affinity interaction of the viral spike protein with the cellular receptor angiotensin-converting enzyme 2. Novel mutations on the spike protein correlate with the high transmissibility of new variants of SARS-CoV-2, highlighting the need for small molecule inhibitors of virus entry into target cells.

View Article and Find Full Text PDF

The majority of virally suppressed individuals will experience rapid viral rebound upon antiretroviral therapy (ART) interruption, providing a strong rationale for the development of cure strategies. Moreover, despite ART virological control, HIV infection is still associated with chronic immune activation, inflammation, comorbidities, and accelerated aging. These effects are believed to be due, in part, to low-grade persistent transcription and trickling production of viral proteins from the pool of latent proviruses constituting the viral reservoir.

View Article and Find Full Text PDF
Article Synopsis
  • Long-term use of antiretroviral therapy (ART) has greatly lowered the health impacts of HIV, but a complete cure remains elusive, primarily due to ongoing HIV reservoirs, particularly in the brain.
  • * The central nervous system (CNS) is not well-studied in the context of HIV, and cognitive issues can persist in people with HIV despite effective ART, highlighting the need for more research.
  • * Advances in human brain organoids, which can replicate brain interactions and HIV infection processes, present a promising avenue for understanding neuroHIV, although integrating key immune cells like microglia remains a challenge.*
View Article and Find Full Text PDF

Antiretroviral therapy effectively controls human immunodeficiency virus (HIV) infection. However, a reservoir of latently infected cells persists under suppressive therapy, constituting a major barrier to an HIV cure. The block-and-lock approach to a functional cure aims at the transcriptional and epigenetic silencing of proviruses, blocking viral reactivation in the absence of therapy, preventing disease progression and transmission, despite the presence of detectable integrated proviruses.

View Article and Find Full Text PDF

HIV-1/AIDS remains a global public health problem. The world health organization (WHO) reported at the end of 2019 that 38 million people were living with HIV-1 worldwide, of which only 67% were accessing antiretroviral therapy (ART). Despite great success in the clinical management of HIV-1 infection, ART does not eliminate the virus from the host genome.

View Article and Find Full Text PDF

Epidemiological findings have discussed recurrent and persistent vulvovaginal candidiasis to be a major manifestation of HIV infected women. Conversely, women with vulvovaginal candidiasis have higher risk of acquiring HIV transmitted during intercourse. Common treatments for such conditions include combined antiretroviral and antifungal therapy.

View Article and Find Full Text PDF

Preexposure prophylaxis (PrEP) using oral or vaginal microbicide is an emerging and effective strategy to prevent HIV transmission. Vaginal film is becoming more acceptable and a convenient dosage form compared to cream, gel and suppository. Extremely poor aqueous solubility of efavirenz (EFV) limits its use as vaginal microbicide.

View Article and Find Full Text PDF

HIV-1 establishes a life-long infection when proviral DNA integrates into the host genome. The provirus can then either actively transcribe RNA or enter a latent state, without viral production. The switch between these two states is governed in great part by the viral protein, Tat, which promotes RNA transcript elongation.

View Article and Find Full Text PDF

Human immunodeficiency virus type 1 (HIV-1) Tat binds the viral RNA structure transactivation-responsive element (TAR) and recruits transcriptional cofactors, amplifying viral mRNA expression. The Tat inhibitor didehydro-cortistatin A (dCA) promotes a state of persistent latency, refractory to viral reactivation. Here we investigated mechanisms of HIV-1 resistance to dCA Mutations in Tat and TAR were not identified, consistent with the high level of conservation of these elements.

View Article and Find Full Text PDF

The HIV-1 transactivation protein (Tat) binds the HIV mRNA transactivation responsive element (TAR), regulating transcription and reactivation from latency. Drugs against Tat are unfortunately not clinically available. We reported that didehydro-cortistatin A (dCA) inhibits HIV-1 Tat activity.

View Article and Find Full Text PDF

Background: Transcription from the integrated HIV-1 promoter is directly governed by its chromatin environment, and the nucleosome-1 downstream from the transcription start site directly impedes transcription from the HIV-1 promoter. The HIV-1 Tat protein regulates the passage from viral latency to active transcription by binding to the viral mRNA hairpin (TAR) and recruiting transcriptional factors to promote transcriptional elongation. The Tat inhibitor didehydro-Cortistatin A (dCA) inhibits transcription and overtime, the lack of low-grade transcriptional events, triggers epigenetic changes at the latent loci that "lock" HIV transcription in a latent state.

View Article and Find Full Text PDF

The intrinsically disordered HIV-1 Tat protein binds the viral RNA transactivation response structure (TAR), which recruits transcriptional cofactors, amplifying viral mRNA expression. Limited Tat transactivation correlates with HIV-1 latency. Unfortunately, Tat inhibitors are not clinically available.

View Article and Find Full Text PDF

HIV-1 Tat activates viral transcription and limited Tat transactivation correlates with latency establishment. We postulated a "block-and-lock" functional cure approach based on properties of the Tat inhibitor didehydro-Cortistatin A (dCA). HIV-1 transcriptional inhibitors could block ongoing viremia during antiretroviral therapy (ART), locking the HIV promoter in persistent latency.

View Article and Find Full Text PDF

Background: The viral transactivator Tat protein is a key modulator of HIV-1 replication, as it regulates transcriptional elongation from the integrated proviral genome. Tat recruits the human transcription elongation factor b, and other host proteins, such as the super elongation complex, to activate the cellular RNA polymerase II, normally stalled shortly after transcription initiation at the HIV promoter. By means of a complex set of interactions with host cellular factors, Tat determines the fate of viral activity within the infected cell.

View Article and Find Full Text PDF