Publications by authors named "Susana Sargento"

The wireless backhaul has emerged as an attractive alternative to traditional fiber backhaul for 5G technology, offering greater flexibility and cost-effectiveness thanks to the availability of high bandwidths capable of achieving fiber-like data rates. However, the millimeter-wave-based (mmWave) protocols, namely IEEE 802.11ad and later IEEE 802.

View Article and Find Full Text PDF

Connecting vehicles to the Internet is an emerging challenge of wireless networks. There are two competing methods for achieving this. First, the wireless local area network (WLAN) approach is based on the IEEE 802.

View Article and Find Full Text PDF

Big data has a substantial role nowadays, and its importance has significantly increased over the last decade. Big data's biggest advantages are providing knowledge, supporting the decision-making process, and improving the use of resources, services, and infrastructures. The potential of big data increases when we apply it in real-time by providing real-time analysis, predictions, and forecasts, among many other applications.

View Article and Find Full Text PDF

The Industrial Internet of Things (IIoT) is one of the most demanding IoT applications. The insertion of industries in the context of smart cities and other smart environments, allied with new communication technologies such as 5G, brings a new horizon of possibilities and new requirements. These requirements include low latency, the support of a massive quantity of devices and data, and the need to support horizontal communications between devices at the edge level.

View Article and Find Full Text PDF

Unmanned Aerial Vehicle (UAV) networks are an emerging technology, useful not only for the military, but also for public and civil purposes. Their versatility provides advantages in situations where an existing network cannot support all requirements of its users, either because of an exceptionally big number of users, or because of the failure of one or more ground base stations. Networks of UAVs can reinforce these cellular networks where needed, redirecting the traffic to available ground stations.

View Article and Find Full Text PDF

Human populations and natural ecosystems are bound to be exposed to ionizing radiation from the deposition of artificial radionuclides resulting from nuclear accidents, nuclear devices or radiological dispersive devices ("dirty bombs"). On the other hand, Naturally Occurring Radioactive Material industries such as phosphate production or uranium mining, contribute to the on site storage of residuals with enhanced concentrations of natural radionuclides. Therefore, in the context of the European agreements concerning nuclear energy, namely the European Atomic Energy Community Treaty, monitoring is an essential feature of the environmental radiological surveillance.

View Article and Find Full Text PDF

5G communications have become an enabler for the creation of new and more complex networking scenarios, bringing together different vertical ecosystems. Such behavior has been fostered by the network function virtualization (NFV) concept, where the orchestration and virtualization capabilities allow the possibility of dynamically supplying network resources according to its needs. Nevertheless, the integration and performance of heterogeneous network environments, each one supported by a different provider, and with specific characteristics and requirements, in a single NFV framework is not straightforward.

View Article and Find Full Text PDF

The Internet of Things (IoT) is a rapidly evolving technology that is changing almost every business, and aquaculture is no exception. In this work we present an integrated IoT platform for the acquisition of environmental data and the monitoring of aquaculture environments, supported by a real-time communication and processing network. The complete monitoring platform consists of environmental sensors equipped in a swarm of mobile Unmanned Surface Vehicles (USVs) and Buoys, capable of collecting aquatic and outside information, and sending it to a central station where it will be stored and processed.

View Article and Find Full Text PDF

The Smart City concept is starting to extend into maritime environments alongside with the increase of Unmanned Surface Vehicles (USV) models on the market. Consequently, by joining both Smart City and USV technologies, a set of platforms and applications for aquatic environments are emerging. This work proposes a low-cost aquatic mobile sensing platform for data gathering with a swarm of USVs communicating through a Delay-Tolerant Network (DTN).

View Article and Find Full Text PDF

A common concern in smart cities is the focus on sensing procedures to provide city-wide information to city managers and citizens. To meet the growing demands of smart cities, the network must provide the ability to handle a large number of mobile sensors/devices, with high heterogeneity and unpredictable mobility, by collecting and delivering the sensed information for future treatment. This work proposes a multi-wireless technology communication platform for opportunistic data gathering and data exchange with respect to smart cities.

View Article and Find Full Text PDF