Cell walls play essential roles in cell recognition, tissue adhesion, and wound response. In particular, pectins as cell-adhesive agents are expected to play a key role in the early stages of grafting. To test this premise, this study focused on examining the dynamics of the accumulation and degree of methyl-esterification of pectic polysaccharides at the graft junctions using tomato autografts as an experimental model.
View Article and Find Full Text PDFDuring the last decades, Arabidopsis seed mucilage has been extensively studied to gain insight into the metabolism of pectin, hemicellulose and cellulose. This review aims to provide a comprehensive examination of the techniques used to understand the composition and structure of mucilage. Moreover, we present novel findings from mucilage analysis, including the separation of pectic domains within the mucilage, offering a fresh perspective on utilizing traditional techniques to analyze mucilage mutant lines.
View Article and Find Full Text PDFFront Plant Sci
September 2024
Blueberries () undergo significant texture changes during development and ripening, notably a consistent decrease in firmness, which affects fruit quality, consumer preference, transportability, and shelf life. This study examined the composition and structural modifications of the cell wall in five commercially available blueberry varieties with differing firmness levels at harvest. Our approach integrated various biochemical techniques for a comprehensive analysis of cell wall components to elucidate firmness differences at the harvest stage.
View Article and Find Full Text PDFChilean papaya, also known as mountain papaya (), is a fruit valued for its nutritional value and pleasant fragrance. The oblong fruit, featuring five ridges and a seed-filled mucilage cavity, is typically consumed cooked due to its high protease content. The mucilage and the seeds are usually discarded as byproducts.
View Article and Find Full Text PDFThe mechanisms underlying susceptibility to and defense against Pseudomonas syringae (Pph) of the common bean (Phaseolus vulgaris) have not yet been clarified. To investigate these, 15-day-old plants of the variety Riñón were infected with Pph and the transcriptomic changes at 2 h and 9 h post-infection were analysed. RNA-seq analysis showed an up-regulation of genes involved in defense/signaling at 2 h, most of them being down-regulated at 9 h, suggesting that Pph inhibits the transcriptomic reprogramming of the plant.
View Article and Find Full Text PDFIntroduction: play a role in the methylation of polysaccharides synthesized by the Golgi. Pectin homogalacturonan (HG) methyl-esterification is essential for the proper function of this polysaccharide in cell walls. In order to better understand the role of in HG biosynthesis, we analyzed mucilage methyl-esterification in mutants.
View Article and Find Full Text PDF. 2022. The Class II KNOX family members and redundantly participate in Arabidopsis seed coat mucilage biosynthesis.
View Article and Find Full Text PDFPolysaccharide methylation, especially that of pectin, is a common and important feature of land plant cell walls. Polysaccharide methylation takes place in the Golgi apparatus and therefore relies on the import of S-adenosyl methionine (SAM) from the cytosol into the Golgi. However, so far, no Golgi SAM transporter has been identified in plants.
View Article and Find Full Text PDFThe use of plant growth regulators (PGRs) is widespread in commercial table grape vineyards. The synthetic cytokinin CPPU is a PGR that is extensively used to obtain higher quality grapes. However, the effect of CPPU on berry firmness is not clear.
View Article and Find Full Text PDFRhamnogalacturonan-I biosynthesis occurs in the lumen of the Golgi apparatus, a compartment where UDP-Rhamnose and UDP-Galacturonic Acid are the main substrates for synthesis of the backbone polymer of pectin. Recent studies showed that UDP-Rha is transported from the cytosol into the Golgi apparatus by a family of six UDP-rhamnose/UDP-galactose transporters (URGT1-6). In this study, analysis of adherent and soluble mucilage (SM) of Arabidopsis thaliana seeds revealed distinct roles of URGT2, URGT4, and URGT6 in mucilage biosynthesis.
View Article and Find Full Text PDFFront Plant Sci
December 2020
Nucleotide sugar transporters (NSTs) are Golgi-localized proteins that play a role in polysaccharide biosynthesis by transporting substrates (nucleotide sugars) from the cytosol into the Golgi apparatus. In Arabidopsis, there is an NST subfamily of six members, called URGTs, which transport UDP-rhamnose and UDP-galactose . URGTs are very similar in protein sequences, and among them, URGT1 and URGT2 are highly conserved in protein sequence and also showed very similar kinetic parameters toward UDP-rhamnose and UDP-galactose .
View Article and Find Full Text PDFUpon imbibition, epidermal cells of Arabidopsis thaliana seeds release a mucilage formed mostly by pectic polysaccharides. The Arabidopsis mucilage is composed mainly of unbranched rhamnogalacturonan-I (RG-I), with low amounts of cellulose, homogalacturonan, and traces of xylan, xyloglucan, galactoglucomannan, and galactan. The pectin-rich composition of the mucilage and their simple extractability makes this structure a good candidate to study the biosynthesis of pectic polysaccharides and their modification.
View Article and Find Full Text PDFBecause they suck phloem sap and act as vectors for phytopathogenic viruses, aphids pose a threat to crop yields worldwide. Pectic homogalacturonan (HG) has been described as a defensive element for plants during infections with phytopathogens. However, its role during aphid infestation remains unexplored.
View Article and Find Full Text PDFIn plants, L-arabinose (Ara) is a key component of cell wall polymers, glycoproteins, as well as flavonoids, and signaling peptides. Whereas the majority of Ara found in plant glycans occurs as a furanose ring (Ara), the activated precursor has a pyranose ring configuration (UDP-Ara). The biosynthesis of UDP-Ara mainly occurs via the epimerization of UDP-xylose (UDP-Xyl) in the Golgi lumen.
View Article and Find Full Text PDFUDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides and is required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-arabinose, and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened mutants in genes coding for putative nucleotide sugar transporters for altered seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I.
View Article and Find Full Text PDFThe cell wall is a complex extracellular matrix composed primarily of polysaccharides. Noncellulosic polysaccharides, glycoproteins and proteoglycans are synthesized in the Golgi apparatus by glycosyltransferases (GTs), which use nucleotide sugars as donors to glycosylate nascent glycan and glycoprotein acceptors that are subsequently exported to the extracellular space. Many nucleotide sugars are synthesized in the cytosol, leading to a topological issue because the active sites of most GTs are located in the Golgi lumen.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2014
Plant cells are surrounded by a cell wall that plays a key role in plant growth, structural integrity, and defense. The cell wall is a complex and diverse structure that is mainly composed of polysaccharides. The majority of noncellulosic cell wall polysaccharides are produced in the Golgi apparatus from nucleotide sugars that are predominantly synthesized in the cytosol.
View Article and Find Full Text PDFArabidopsis seeds rapidly release hydrophilic polysaccharides from the seed coat on imbibition. These form a heavy mucilage layer around the seed that makes it sink in water. Fourteen natural Arabidopsis variants from central Asia and Scandinavia were identified with seeds that have modified mucilage release and float.
View Article and Find Full Text PDFBackground: The epidermal cells of the seed coat of certain species accumulate polysaccharides during seed development for cell wall reinforcement or release on imbibition to form mucilage. Seed-coat epidermal cells show natural variation in their structure and mucilage production, which could explain the diverse ecophysiological roles proposed for the latter. Arabidopsis mucilage mutants have proved to be an important tool for the identification of genes involved in the production of seed-coat polysaccharides.
View Article and Find Full Text PDFImbibed seeds of the Arabidopsis thaliana accession Djarly are affected in mucilage release from seed coat epidermal cells. The impaired locus was identified as a pectin methylesterase inhibitor gene, PECTIN METHYLESTERASE INHIBITOR6 (PMEI6), specifically expressed in seed coat epidermal cells at the time when mucilage polysaccharides are accumulated. This spatio-temporal regulation appears to be modulated by GLABRA2 and LEUNIG HOMOLOG/MUCILAGE MODIFIED1, as expression of PMEI6 is reduced in mutants of these transcription regulators.
View Article and Find Full Text PDF