The noncanonical macroautophagy pathway, LC3-associated phagocytosis (LAP) has recently emerged as an important catabolic process involved during exogenous antigen processing. It has been described that in human macrophages and dendritic cells the direct recruitment of LC3 to the phagosomal membrane is associated with its maturation impairment, allowing the stabilization of the cargo to prolong antigen presentation on major histocompatibility complex (MHC) class II molecules.In this chapter, we describe methods to monitor, manipulate, and understand the role of LAP during MHC class II presentation.
View Article and Find Full Text PDFBackground: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymatic disorder of red blood cells in human subjects, causing hemolytic anemia linked to impaired nicotinamide adenine dinucleotide phosphate (NADPH) production and imbalanced redox homeostasis in erythrocytes. Because G6PD is expressed by a variety of hematologic and nonhematologic cells, a broader clinical phenotype could be postulated in G6PD-deficient patients. We describe 3 brothers with severe G6PD deficiency and susceptibility to bacterial infection.
View Article and Find Full Text PDFEpstein Barr virus (EBV) persists as a latent herpes virus infection in the majority of the adult human population. The virus can reactivate from this latent infection into lytic replication for virus particle production. Here, we report that autophagic membranes, which engulf cytoplasmic constituents during macroautophagy and transport them to lysosomal degradation, are stabilized by lytic EBV replication in infected epithelial and B cells.
View Article and Find Full Text PDFDietary antioxidant supplementation has been popular in Western countries. Various supplements have been developed in recent years, and research has been gathered from both animal and clinical research trials. In this review, the therapeutic value of oral administration of a combination of melon superoxide dismutase (SOD) and a vegetable polymer (gliadin) is evaluated.
View Article and Find Full Text PDFA recent report from our group has described that upon engulfment of pathogens, a subset of phagosomes is formed to preserve antigens for prolonged presentation on MHC class II molecules. The distinctive feature of these particular vesicles is their coating with LC3/Atg8, a key component of the autophagy machinery. Here we discuss the possible outcomes of LC3-associated phagocytosis and its implications in the context of immunity.
View Article and Find Full Text PDFAntigen preservation for presentation is a hallmark of potent antigen-presenting cells. In this paper, we report that in human macrophages and dendritic cells, a subset of phagosomes gets coated with Atg8/LC3, a component of the molecular machinery of macroautophagy, and maintains phagocytosed antigens for prolonged presentation on major histocompatibility complex class II molecules. These Atg8/LC3-positive phagosomes are formed around the antigen with TLR2 agonists and require reactive oxygen species production by NOX2 for their generation.
View Article and Find Full Text PDFMacroautophagy was originally discovered as a nutrient salvage pathway during starvation. By now it has not only become clear that degradation of cytoplasmic constituents via transport by autophagosomes to lysosomes can be used for innate and adaptive immunity, but that the core machinery assists antigen presentation to the immune system by a variety of vesicular transport pathways. All of these rely on the presentation of small protein waste fragments, which are generated by a variety of catabolic pathways, including macroautophagy, on major histocompatibility complex (MHC) molecules.
View Article and Find Full Text PDFTwo-cysteine peroxiredoxins are ubiquitous peroxidases that play various functions in cells. In Leishmania and related trypanosomatids, which lack catalase and selenium-glutathione peroxidases, the discovery of this family of enzymes provided the molecular basis for peroxide removal in these organisms. In this report the functional relevance of one of such enzymes, the mitochondrial 2-Cys peroxiredoxin (mTXNPx), was investigated along the Leishmania infantum life cycle.
View Article and Find Full Text PDFMacroautophagy is a main catabolic pathway of eukaryotic cells, delivering cytoplasmic constituents for lysosomal degradation. Originally described as a starvation response, it has now been realised that macroautophagy supports many aspects of innate and adaptive immunity by facilitating innate pathogen detection and antigen presentation, as well as pathogen clearance and lymphocyte expansion. In the first half of this review, we summarise new insights into substrate selection and macroautophagic support of vesicular transport pathways, which underlie macroautophagic regulation of afferent and efferent immunity to pathogens, as outlined in the second half of the review.
View Article and Find Full Text PDFTryparedoxins (TXNs) are oxidoreductases unique to trypanosomatids (including Leishmania and Trypanosoma parasites) that transfer reducing equivalents from trypanothione, the major thiol in these organisms, to sulfur-dependent peroxidases and other dithiol proteins. The existence of a TXN within the mitochondrion of trypanosomatids, capable of driving crucial redox pathways, is considered a requisite for normal parasite metabolism. Here this concept is shown not to apply to Leishmania.
View Article and Find Full Text PDFLeishmania infantum cytosolic tryparedoxin (LiTXN1) can be regarded as a potential candidate for drug targeting. This redox active molecule, which belongs to the thioredoxin superfamily, is one constituent of the hydroperoxide elimination cascade in L. infantum and may also be involved in other cellular processes such as DNA synthesis or host-parasite interaction.
View Article and Find Full Text PDFWithin the mitochondrion of Leishmania infantum, hydroperoxide metabolism relies on the activity of tryparedoxin-dependent peroxidases (TXNPxs). Tryparedoxins (TXNs) are thioredoxin-related oxidoreductases, which in vitro are reduced by the trypanothione reductase/trypanothione [TR/T(SH)(2)] redox couple. Still, there is no evidence that this actually occurs in the mitochondrion.
View Article and Find Full Text PDFThe glyoxalase pathway catalyzes the formation of d-lactate from methylglyoxal, a toxic byproduct of glycolysis. In trypanosomatids, trypanothione replaces glutathione in this pathway, making it a potential drug target, since its selective inhibition might increase methylglyoxal concentration in the parasites. Two glyoxalase II structures were solved.
View Article and Find Full Text PDFMicrobiology (Reading)
February 2006
The ubiquitous protein LuxS with S-ribosylhomocysteinase activity is involved in S-adenosyl methionine detoxification, C-1 unit recycling and the production of autoinducers that allow the cell to sense and respond to cell density. Independent reports describe the impact of LuxS deficiency on Streptococcus pneumoniae virulence in the mouse. In vitro, LuxS deficiency confers discrete phenotypes.
View Article and Find Full Text PDFIn the Streptococcus pneumoniae genome, stkP, encoding a membrane-associated serine/threonine kinase, is not redundant (L. Novakova, S. Romao, J.
View Article and Find Full Text PDF