We investigated the synthesis of α-amino acids under possible prebiotic terrestrial conditions in the presence of dissolved iron (II) in a simulated prebiotic ocean. An aerosol-liquid cycle with a prebiotic atmosphere is shown to produce amino acids via Strecker synthesis with relatively high yields. However, in the presence of iron, the HCN was captured in the form of a ferrocyanide, partially inhibiting the formation of amino acids.
View Article and Find Full Text PDFHydrogen cyanide (HCN) is a ubiquitous molecule in the Universe. It is a compound that is easily produced in significant yields in prebiotic simulation experiments using a reducing atmosphere. HCN can spontaneously polymerise under a wide set of experimental conditions.
View Article and Find Full Text PDFThe data presented here provide a novel contribution to the understanding of the structural features of HCN polymers and could be useful in further development of models for prebiotic chemistry. The interpretation of spectroscopic and analytical data, along with previous results reported by other authors, allowed us to propose a mechanism for the aqueous polymerization of HCN from its primary and simplest isolated oligomer, the diaminomaleonitrile (DAMN) tetramer. We suggest that 'insoluble black HCN polymers' are formed by an unsaturated complex matrix, which retains a significant amount of H(2) O and important bioorganic compounds or their precursors.
View Article and Find Full Text PDFClasically, prebiotic chemistry has focused on the production and identification of simple organic molecules, many of them forming part of "intractable polymers" named tholins. In a previous work, we demonstrated that in experiments using an external energy source and inorganic carbon the aqueous aerosols improved the formation of hydrophilic tholins. Herein, we elucidate the role of pH (from 4 to 12) in prebiotic experiments using saline aqueous aerosols, spark discharges and an atmosphere containing CH(4).
View Article and Find Full Text PDFThe complex salt named Prussian Blue, Fe4[Fe(CN)6]3 x 15 H2O, can release cyanide at pH > 10. From the point of view of the origin of life, this fact is of interest, since the oligomers of HCN, formed in the presence of ammonium or amines, leads to a variety of biomolecules. In this work, for the first time, the thermal wet decomposition of Prussian Blue was studied.
View Article and Find Full Text PDFHerein, we report the efficient synthesis of RNA bases and functionalized s-triazines from 0.1 M urea solutions in water after subjection to freeze-thaw cycles for three weeks. The icy solution was under a reductive, methane-based atmosphere, which was subjected to spark discharges as an energy source for the first 72 h of the experiment.
View Article and Find Full Text PDFThe recent evidences of presence of subsurface oceans of liquid water and ice on Saturn's moons, and the possible presence and astrobiological importance of polycyclic aromatic hydrocarbons (PAHs) in these environments, provide strong motivation for the exploration of the prebiotic chemistry in ice and to test if PAHs could be experimentally synthesized in ice surfaces under atmospheres containing methane as carbon source. In this work, we present a new design for prebiotic-chemistry experiments in ice matrix. Using this design, a mixture of products including PAHs, polar aromatic compounds, and hydrophilic acetylene-based polymers was obtained.
View Article and Find Full Text PDF