In recent years, a growing body of evidence has recognized the tandem repeat sequences, and specifically satellite DNA, as a functional class of sequences in the genomic "dark matter." Using an original, complementary, and thus an eclectic experimental design, we show that the cat archetypal satellite DNA sequence, FA-SAT, is "frozen" conservatively in several Bilateria genomes. We found different genomic FA-SAT architectures, and the interspersion pattern was conserved.
View Article and Find Full Text PDFBreast cancer is a complex and heterogeneous disease, and the establishment of cell models in order to properly study the disease at the molecular and cellular level is of utmost importance. Here, we present the cytogenetic characterization and gene expression analysis of the tumoral mammary rat cell line CLS-ACI-1. The use of banding and molecular cytogenetic techniques allowed the description of the complex CLS-ACI-1 karyotype and the identification of breakpoints in clonal chromosome rearrangements.
View Article and Find Full Text PDFFor several decades, transcriptional inactivity was considered as one of the particular features of constitutive heterochromatin and, therefore, of its major component, satellite DNA sequences. However, more recently, succeeding evidences have demonstrated that these sequences can indeed be transcribed, yielding satellite non-coding RNAs with important roles in the organization and regulation of genomes. Since then, several studies have been conducted, trying to understand the function(s) of these sequences not only in the normal but also in cancer genomes.
View Article and Find Full Text PDFThe order Rodentia and in particular the Muridae are characterised by extremely high rates of chromosome evolution and remarkable chromosome diversity. The Praomys group (Murinae, Muridae and Rodentia) constitutes a diverse and abundant group divided into two complexes, the jacksoni complex and the tullbergi complex which includes the species Praomys tullbergi. Comparative chromosome painting using the two index genomes, Mus musculus and Rattus norvegicus, was performed resulting in a high resolution chromosome map for P.
View Article and Find Full Text PDFHere we present the first detailed characterization of Praomys tullbergi karyotype, enlightening several chromosome features such as constitutive heterochromatin, telomeric and LINE-1 sequences. The combination of these approaches provided some interesting insights about the genome organization of this African species, which is one of the tullbergi complex elements, a group of species belonging to Murinae (Rodentia, Muridae). Evolutionary considerations on Praomys chromosomes were also achieved, namely, the autosomal complement and the X chromosome from P.
View Article and Find Full Text PDF