Publications by authors named "Susana Martinon"

After an ischemic stroke, various harmful mechanisms contribute to tissue damage, including the inflammatory response. The increase in pro-inflammatory cytokines has been related to greater damage to the neural tissue and the promotion of neurological alterations, including cognitive impairment. Recent research has shown that the use of prebiotics and/or probiotics counteracts inflammation and improves cognitive function through the production of growth factors, such as brain-derived neurotrophic factor (BDNF), by reducing inflammatory molecules.

View Article and Find Full Text PDF

Adjuvants are a diverse family of substances whose main objective is to increase the strength, quality, and duration of the immune response caused by vaccines. The most commonly used adjuvants are aluminum-based, oil-water emulsion, and bacterial-origin adjuvants. In this paper, we will discuss how the election of adjuvants is important for the adjuvant-mediated induction of immunity for different types of vaccines.

View Article and Find Full Text PDF

Background: The chronic phase of Spinal Cord (SC) injury is characterized by the presence of a hostile microenvironment that causes low activity and a progressive decline in neurological function; this phase is non-compatible with regeneration. Several treatment strategies have been investigated in chronic SC injury with no satisfactory results. OBJECTIVE- In this proof-of-concept study, we designed a combination therapy (Comb Tx) consisting of surgical glial scar removal plus scar inhibition, accompanied with implantation of mesenchymal stem cells (MSC), and immunization with neural-derived peptides (INDP).

View Article and Find Full Text PDF

Nicotine is the primary psychoactive component of tobacco. Many addictive nicotinic actions are mediated by an increase in the activity of the serotonin (5-HT) system. Some studies show that the 5-HT, 5-HT, and 5-HT receptors have a central role in the induction and expression of nicotine-induced locomotor sensitization.

View Article and Find Full Text PDF

Background: After spinal cord (SC)-injury, a non-modulated immune response contributes to the damage of neural tissue. Protective autoimmunity (PA) is a T cell mediated, neuroprotective response induced after SC-injury. Immunization with neural-derived peptides (INDP), such as A91, has shown to promote-in vitro-the production of neurotrophic factors.

View Article and Find Full Text PDF

The rat is the most common animal model for the preclinical validation of neuroprotective therapies in spinal cord injury (SCI). Lipid peroxidation (LP) is a hallmark of the damage triggered after SCI. Free radicals react with fatty acids causing cellular and membrane disruption.

View Article and Find Full Text PDF

Apoptosis is one of the most destructive mechanisms that develop after spinal cord (SC) injury. Immunization with neural-derived peptides (INDPs) such as A91 has shown to reduce the deleterious proinflammatory response and the amount of harmful compounds produced after SC injury. With the notion that the aforementioned elements are apoptotic inducers, we hypothesized that INDPs would reduce apoptosis after SC injury.

View Article and Find Full Text PDF

Immunisation with neural-derived peptides is a promising strategy in models of spinal cord (SC) injury. Recent studies have also demonstrated that the addition of glutathione monoethyl ester (GHSE) to this strategy further improves motor recovery, tissue protection and neuronal survival after SC injury. As it is realistic to envision that this combination therapy could be tested in clinical trials, the therapeutic window should be experimentally explored before implementing its use in SC-injured human beings.

View Article and Find Full Text PDF

Protective autoimmunity (PA) is a physiological response to central nervous system trauma that has demonstrated to promote neuroprotection after spinal cord injury (SCI). To reach its beneficial effect, PA should be boosted by immunizing with neural constituents or neural-derived peptides such as A91. Immunizing with A91 has shown to promote neuroprotection after SCI and its use has proven to be feasible in a clinical setting.

View Article and Find Full Text PDF

Immunization with neurally derived peptides (INDP) boosts the action of an autoreactive immune response that has been shown to induce neuroprotection in several neurodegenerative diseases, especially after spinal cord (SC) injury. This strategy provides an environment that promotes neuronal survival and tissue preservation. The mechanisms by which this autoreactive response exerts its protective effects is not totally understood at the moment.

View Article and Find Full Text PDF

Lipid peroxidation (LP) is one of the most harmful mechanisms developed after spinal cord (SC) injury. Several strategies have been explored in order to control this phenomenon. Protective autoimmunity is a physiological process based on the modulation of inflammatory cells that can be boosted by immunizing with neural-derived peptides, such as A91.

View Article and Find Full Text PDF

Spinal cord (SC) injury causes serious neurological alterations that importantly disturb the physical, emotional and economical stability of affected individuals. Damage to the neural tissue is primarily caused by the lesion itself and secondarily by a multitude of destructive mechanisms that develop afterwards. Unfortunately, the restoring capacity of the central nervous system is very limited because of reduced intrinsic growth capacity and non-permissive environment for axonal elongation.

View Article and Find Full Text PDF

Therapeutic approaches that promote both neuroprotection and neuroregeneration would be valuable for spinal cord (SC) injury therapies. Cyclosporin-A (CsA) is an immunosuppressant that, due to its mechanism of action, could both protect and regenerate the neural tissue after injury. Previous studies have already demonstrated that intraperitoneal administration of CsA at a dose of 2.

View Article and Find Full Text PDF