Hypoglycemia is a common occurrence in critically ill patients and is associated with significant mortality and morbidity. We developed a machine learning model to predict hypoglycemia by using a multicenter intensive care unit (ICU) electronic health record dataset. Machine learning algorithms were trained and tested on patient data from the publicly available eICU Collaborative Research Database.
View Article and Find Full Text PDFAnalysis of real-world glucose and insulin clinical data recorded in electronic medical records can provide insights into tailored approaches to clinical care, yet presents many analytic challenges. This work makes publicly available a dataset that contains the curated entries of blood glucose readings and administered insulin on a per-patient basis during ICU admissions in the Medical Information Mart for Intensive Care (MIMIC-III) database version 1.4.
View Article and Find Full Text PDF