Publications by authors named "Susana L Gonzalez"

Progesterone has been shown to exert a wide range of remarkable protective actions in experimental models of central nervous system injury or disease. However, the intimate mechanisms involved in each of these beneficial effects are not fully depicted. In this review, we intend to give the readers a thorough revision on what is known about the participation of diverse receptors and signaling pathways in progesterone-mediated neuroprotective, pro-myelinating and anti-inflammatory outcomes, as well as point out to novel regulatory mechanisms that could open new perspectives in steroid-based therapies.

View Article and Find Full Text PDF

Chemotherapy-induced peripheral neuropathy is a disabling condition induced by several frequently used chemotherapeutic drugs including the front-line agent oxaliplatin (OXA). Symptoms are predominantly sensory with the development of neuropathic pain. Alternative dosing protocols and treatment discontinuation are the only available therapeutic strategies.

View Article and Find Full Text PDF

In the last decades, an active and stimulating area of research has been devoted to explore the role of neuroactive steroids in pain modulation. Despite challenges, these studies have clearly contributed to unravel the multiple and complex actions and potential mechanisms underlying steroid effects in several experimental conditions that mimic human chronic pain states. Based on the available data, this review focuses mainly on progesterone and its reduced derivative allopregnanolone (also called 3α,5α-tetrahydroprogesterone) which have been shown to prevent or even reverse the complex maladaptive changes and pain behaviors that arise in the nervous system after injury or disease.

View Article and Find Full Text PDF

Patients with spinal cord injury (SCI) develop chronic pain that severely compromises their quality of life. We have previously reported that progesterone (PG), a neuroprotective steroid, could offer a promising therapeutic strategy for neuropathic pain. In the present study, we explored temporal changes in the expression of the neuropeptides galanin and tyrosine (NPY) and their receptors (GalR1 and GalR2; Y1R and Y2R, respectively) in the injured spinal cord and evaluated the impact of PG administration on both neuropeptide systems and neuropathic behavior.

View Article and Find Full Text PDF

Neuropathic pain is a frequent complication of spinal cord injury (SCI), still refractory to conventional treatment. The presence and biological activity of steroidogenic regulatory proteins and enzymes in the spinal cord suggests that neurosteroids locally generated could modulate pain messages. In this study we explored temporal changes in the spinal expression of the 18kDa translocator protein TSPO, the steroidogenic acute regulatory protein (StAr) and the steroidogenic enzyme 5α-reductase (5α-RI/II) in an experimental model of central chronic pain.

View Article and Find Full Text PDF
Article Synopsis
  • The review examines how neurosteroids, particularly progesterone and allopregnanolone, influence pain regulation, especially in the spinal cord's dorsal horn, a key area for processing pain.
  • It highlights the mechanisms by which these neuroactive steroids can reduce nociceptive (pain from harm) and neuropathic (nerve damage-related) pain.
  • The focus is on how progesterone and its derivative can mitigate negative effects and pain behaviors following nervous system injury in experimental settings.
View Article and Find Full Text PDF

Neuropathic pain is a frequent complication of spinal cord injury (SCI), still refractory to conventional treatment. Glial cell activation and cytokine production contribute to the pathology of central neuropathic syndromes. In this study we evaluated the effects of progesterone, a neuroactive steroid, on pain development and the spinal expression of IL-1β, its receptors (IL-1RI and IL-1RII) and antagonist (IL-1ra), IL-6 and TNFα, and NR1 subunit of NMDAR.

View Article and Find Full Text PDF

Substantial evidence supports that progesterone exerts many functions in the central and peripheral nervous system unrelated to its classical role in reproduction. In this review we first discussed progesterone effects following binding to the classical intracellular progesterone receptors A and B and several forms of membrane progesterone receptors, the modulation of intracellular signalling cascades and the interaction of progesterone reduced metabolites with neurotransmitter receptors. We next described our results involving animal models of human neuropathologies to elucidate the protective roles of progesterone.

View Article and Find Full Text PDF

Background: Peripheral nerve injury-evoked neuropathic pain still remains a therapeutic challenge. Recent studies support the notion that progesterone, a neuroactive steroid, may offer a promising perspective in pain modulation.

Objectives: Evaluate the effect of progesterone administration on the development of neuropathic pain-associated allodynia and on the spinal expression of N-Methyl-D-Aspartate Receptor subunit 1 (NR1), its phosphorylated form (pNR1), and the gamma isoform of protein kinase C (PKCγ), all key players in the process of central sensitization, in animals subjected to a sciatic nerve constriction.

View Article and Find Full Text PDF

Unlabelled: Chronic pain after spinal cord injury represents a therapeutic challenge. Progesterone, a neuroprotective steroid, has been shown to modulate nociceptive thresholds, whereas its effect on neuropathic pain needs to be further explored. In this study, we evaluated whether progesterone could ameliorate pain-associated behaviors in animals subjected to a spinal cord hemisection.

View Article and Find Full Text PDF

In recent years, a growing list of publications point to the value of steroid hormones as an interesting option for the treatment of several type of lesions and diseases of the nervous system. Progesterone, well known for its role in pregnancy, has recently been shown to exert neuroprotective and promyelinating effects in both, the peripheral and central nervous system, including the injured spinal cord. Previous work from our laboratory has shown that progesterone actions in experimental models of spinal neurodegeneration or injury may involve the modulation of brain-derived neurotrophic factor, a neurotrophin with important implications in neuronal survival and axonal regeneration.

View Article and Find Full Text PDF

Studies on the neuroprotective and promyelinating effects of progesterone in the nervous system are of great interest due to their potential clinical connotations. In peripheral neuropathies, progesterone and reduced derivatives promote remyelination, axonal regeneration and the recovery of function. In traumatic brain injury (TBI), progesterone has the ability to reduce edema and inflammatory cytokines, prevent neuronal loss and improve functional outcomes.

View Article and Find Full Text PDF

Progesterone is emerging as a myelinizing factor for central nervous system injury. Successful remyelination requires proliferation and differentiation of oligodendrocyte precursor cells (OPC) into myelinating oligodendrocytes, but this process is incomplete following injury. To study progesterone actions on remyelination, we administered progesterone (16 mg/kg/day) to rats with complete spinal cord injury.

View Article and Find Full Text PDF

Central neuropathic pain is refractory to conventional treatment and thus remains a therapeutic challenge. In this work, we used a well-recognized model of central neuropathic pain to evaluate time-dependent expression of preprodynorphin (ppD), protein kinase C gamma (PKCgamma) and NMDA receptor (NMDAR) subunits NR1, NR2A and NR2B, all critical players in nociceptive processing at the spinal level. Male Sprague-Dawley rats were subjected to spinal hemisection at T13 level and sham-operated rats were included as control animals.

View Article and Find Full Text PDF

(1) Following acute spinal cord injury, progesterone modulates several molecules essential for motoneuron function, although the morphological substrates for these effects are unknown. (2) The present study analyzed morphological changes in motoneurons distal to the lesion site from rats with or without progesterone treatment. We employed electron microscopy to study changes in nucleus and cytoplasm and immunohistochemistry for the microtubule-associated protein 2 (MAP2) for changes in cytoskeleton.

View Article and Find Full Text PDF

In addition to its traditional role in reproduction, progesterone (PROG) has demonstrated neuroprotective and promyelinating effects in lesions of the peripheral and central nervous systems, including the spinal cord. The latter is a target of PROG, as nuclear receptors, as well as membrane receptors, are expressed by neurons and/or glial cells. When spinal cord injury (SCI) is produced at the thoracic level, several genes become sensitive to PROG in the region caudal to the lesion site.

View Article and Find Full Text PDF

Progesterone (PROG) provides neuroprotection to the injured central and peripheral nervous system. These effects may be due to regulation of myelin synthesis in glial cells and also to direct actions on neuronal function. Both types of cells express classical intracellular PROG receptors (PR), while neurons additionally express the PROG membrane-binding site called 25-Dx.

View Article and Find Full Text PDF

Progesterone (PROG) is synthesized in the brain, spinal cord and peripheral nerves. Its direct precursor pregnenolone is either derived from the circulation or from local de novo synthesis as cytochrome P450scc, which converts cholesterol to pregnenolone, is expressed in the nervous system. Pregnenolone is converted to PROG by 3beta-hydroxysteroid dehydrogenase (3beta-HSD).

View Article and Find Full Text PDF

Repair of damage and recovery of function are fundamental endeavors for recuperation of patients and experimental animals with spinal cord injury. Steroid hormones, such as progesterone (PROG), show regenerative and myelinating properties following injury of the peripheral and central nervous system. In this work, we studied PROG effects on glial cells of the normal and transected (TRX) spinal cord, to complement previous studies in motoneurons.

View Article and Find Full Text PDF

Progesterone neuroprotection has been reported in experimental brain, peripheral nerve and spinal cord injury. To investigate for a similar role in neurodegeneration, we studied progesterone effects in the Wobbler mouse, a mutant presenting severe motoneuron degeneration and astrogliosis of the spinal cord. Implant of a single progesterone pellet (20 mg) during 15 days produced substantial changes in Wobbler mice spinal cord.

View Article and Find Full Text PDF

Motor neuron degeneration characterizes the spinal cord of patients with amyotrophic lateral sclerosis and the Wobbler mouse mutant. Considering that progesterone (PROG) provides neuroprotection in experimental ischemia and injury, its potential role in neurodegeneration was studied in the murine model. Two-month-old symptomatic Wobbler mice were left untreated or received sc a 20-mg PROG implant for 15 days.

View Article and Find Full Text PDF

Diabetes can be associated with cerebral dysfunction in humans and animal models of the disease. Moreover, brain anomalies and alterations of the neuroendocrine system are present in type 1 diabetes (T1D) animals, such as the spontaneous nonobese diabetic (NOD) mouse model and/or the pharmacological streptozotocin (STZ)-induced model. Because of the prevalent role of astrocytes in cerebral glucose metabolism and their intimate connection with neurones, we investigated hippocampal astrocyte alterations in prediabetic and diabetic NOD mice and STZ-treated diabetic mice.

View Article and Find Full Text PDF

Progesterone (PROG) exerts beneficial and neuroprotective effects in the injured central and peripheral nervous system. In the present work, we examine PROG effects on three measures of neuronal function under negative regulation (choline acetyltransferase [ChAT] and Na,K-ATPase) or stimulated (growth-associated protein [GAP-43]) after acute spinal cord transection injury in rats. As expected, spinal cord injury reduced ChAT immunostaining intensity of ventral horn neurons.

View Article and Find Full Text PDF