Methylmercury (MeHg) has been recognized as a very toxic contaminant present in certain foodstuffs that adversely affects health and impairs the normal function of different organs. Experimental studies have shown that selenocompounds play an important role as cellular detoxificant and protective agents against the harmful effects of mercury. The present study examined the potential preventive activities of organic selenocompounds, focused on selenocystine (SeCys), against MeHg-induced toxicity in human HepG2 cells.
View Article and Find Full Text PDFMercury toxicity and its implications in development are a major concern, due to the major threat to ecosystems and human health that this compound represents. Although some of the effects of methylmercury (MeHg) exposure have been extensively studied, the molecular mechanisms of interaction between this compound and developing organisms are still not completely understood. To provide further insights into these mechanisms, we carried out a quantitative proteomic study (iTRAQ) using zebrafish larvae exposed to 5 μg L(-1) and 25 μg L(-1) MeHg as a model.
View Article and Find Full Text PDFUnderstanding the molecular mechanisms underlying MeHg toxicity and the way in which this molecule interacts with living organisms is a critical point since MeHg represents a well-known risk to ecosystems and human health. We used a quantitative proteomic approach based on stable isotopic labeling by amino acids in cell culture in combination with SDS-PAGE and nanoflow LC-ESI-LTQ for analyzing the differential protein expression of hepatic cells associated to MeHg exposure. Seventy-eight proteins were found de-regulated by more than 1.
View Article and Find Full Text PDFA fast method for mercury extraction from biological samples based on the use of HCl leaching plus different enzymatic hydrolysis (with and without mercury complexing agents), and the use of focussed ultrasounds (2-mm microtip) is here proposed. Total mercury content in several biological samples was determined by FI-ICP-MS using a carrier solution consisting of 0.1% (v/v) HCl, 0.
View Article and Find Full Text PDFMethylmercury (MeHg) has been suggested to exert cytotoxicity through multiple mechanisms, but the precise biochemical machinery has not been fully defined. This study was aimed at investigating the time-course (0-24h) effect of 2mg/L MeHg on cell death in human HepG2 cells. MeHg decreased cell viability in a time-dependent manner, which was concomitant with increased LDH leakage, reduced GSH levels, CAT activity and altered activity of the antioxidant enzymes GPx and GR at the longest times of incubation (16 and 24h).
View Article and Find Full Text PDFSelenium methylselenocysteine (Se-MeSeCys) is a common selenocompound in the diet with a tested chemopreventive effect. This study investigated the potential protective effect of Se-MeSeCys against a chemical oxidative stress induced by tert-butyl hydroperoxide (t-BOOH) on human hepatoma HepG2 cells. Speciation of selenium derivatives by liquid chromatography-inductively coupled plasma mass spectrometry depicts Se-MeSeCys as the only selenocompound in the cell culture.
View Article and Find Full Text PDF