Publications by authors named "Susana Clusella-Trullas"

Widespread species experience a variety of climates across their distribution, which can structure their thermal tolerance, and ultimately, responses to climate change. For ectotherms, activity is highly dependent on temperature, its variability and availability of favourable microclimates. Thermal exposure and tolerance may be structured by the availability and heterogeneity of microclimates for species living along temperature and/or precipitation gradients - but patterns and mechanisms underlying such gradients are poorly understood.

View Article and Find Full Text PDF

Understanding how temperature determines the distribution of life is necessary to assess species' sensitivities to contemporary climate change. Here, we test the importance of temperature in limiting the geographic ranges of ectotherms by comparing the temperatures and areas that species occupy to the temperatures and areas species could potentially occupy on the basis of their physiological thermal tolerances. We find that marine species across all latitudes and terrestrial species from the tropics occupy temperatures that closely match their thermal tolerances.

View Article and Find Full Text PDF

The ways in which seabirds navigate over very large spatial scales remain poorly understood. While olfactory and visual information can provide guidance over short distances, their range is often limited to 100s km, far below the navigational capacity of wide-ranging animals such as albatrosses. Infrasound is a form of low-frequency sound that propagates for 1,000s km in the atmosphere.

View Article and Find Full Text PDF

In the era of human-driven climate change, understanding whether behavioural buffering of temperature change is linked with organismal fitness is essential. According to the 'cost-benefit' model of thermoregulation, animals that live in environments with high frequencies of favourable thermal microclimates should incur lower thermoregulatory costs, thermoregulate more efficiently and shunt the associated savings in time and energy towards other vital tasks such as feeding, territory defence and mate acquisition, increasing fitness. Here, we explore how thermal landscapes at the scale of individual territories, physiological performance and behaviour interact and shape fitness in the southern rock agama lizard ().

View Article and Find Full Text PDF

Changing ocean temperatures are predicted to challenge marine organisms, especially when combined with other factors, such as ocean acidification. Acclimation, as a form of phenotypic plasticity, can moderate the consequences of changing environments for biota. Our understanding of how altered temperature and acidification together influence species' acclimation responses is, however, limited compared with that of responses to single stressors.

View Article and Find Full Text PDF

The dimensions of auditory structures among animals of varying body size can have implications for hearing performance. Larger animals often have a hearing range focused on lower frequencies than smaller animals, which may be explained by several anatomical mechanisms in the ear and their scaling relationships. While the effect of size on ear morphology and hearing performance has been explored in some mammals, anurans and lizards, much less is known about the scaling relationships for the single-ossicle, internally-coupled ears of birds.

View Article and Find Full Text PDF

While essential in understanding impacts of climate change for organisms, diel variation remains an understudied component of temporal variation in thermal tolerance limits [i.e. the critical thermal minimum (CTmin) and maximum (CTmax)].

View Article and Find Full Text PDF

Birds exhibit wide variation in their use of aquatic environments, on a spectrum from entirely terrestrial, through amphibious, to highly aquatic. Although there are limited empirical data on hearing sensitivity of birds underwater, mounting evidence indicates that diving birds detect and respond to sound underwater, suggesting that some modifications of the ear may assist foraging or other behaviors below the surface. In air, the tympanic middle ear acts as an impedance matcher that increases sound pressure and decreases sound vibration velocity between the outside air and the inner ear.

View Article and Find Full Text PDF

To forecast climate change impacts across habitats or taxa, thermal vulnerability indices (e.g., safety margins and warming tolerances) are growing in popularity.

View Article and Find Full Text PDF

With functions as diverse as communication, protection and thermoregulation, coloration is one of the most important traits in lizards. The ability to change colour as a function of varying social and environmental conditions is thus an important innovation. While colour change is present in animals ranging from squids, to fish and reptiles, not much is known about the mechanisms behind it.

View Article and Find Full Text PDF

Understanding how species' thermal limits have evolved across the tree of life is central to predicting species' responses to climate change. Here, using experimentally-derived estimates of thermal tolerance limits for over 2000 terrestrial and aquatic species, we show that most of the variation in thermal tolerance can be attributed to a combination of adaptation to current climatic extremes, and the existence of evolutionary 'attractors' that reflect either boundaries or optima in thermal tolerance limits. Our results also reveal deep-time climate legacies in ectotherms, whereby orders that originated in cold paleoclimates have presently lower cold tolerance limits than those with warm thermal ancestry.

View Article and Find Full Text PDF

Insects have been influential models in research on color variation, its evolutionary drivers and the mechanistic basis of such variation. More recently, several studies have indicated that insect color is responding to rapid climate change. However, it remains challenging to ascertain drivers of color variation among populations and species, and across space and time, as multiple biotic and abiotic factors can interact and mediate color change.

View Article and Find Full Text PDF

In a highly dynamic airspace, flying animals are predicted to adjust foraging behaviour to variable wind conditions to minimize movement costs. Sexual size dimorphism is widespread in wild animal populations, and for large soaring birds which rely on favourable winds for energy-efficient flight, differences in morphology, wing loading and associated flight capabilities may lead males and females to respond differently to wind. However, the interaction between wind and sex has not been comprehensively tested.

View Article and Find Full Text PDF

The perception of airborne infrasound (sounds below 20 Hz, inaudible to humans except at very high levels) has been documented in a handful of mammals and birds. While animals that produce vocalizations with infrasonic components (e.g.

View Article and Find Full Text PDF

A classic question in evolutionary biology is whether behavioral flexibility hastens or hinders evolutionary change. The latter idea, that behavior reduces the number of environmental states experienced by an organism and buffers that organism against selection, has been dubbed the "Bogert Effect" after Charles Bogert, the biologist who first popularized the phenomenon using data from lizards. The Bogert Effect is pervasive when traits like body temperature, which tend to be invariant across space in species that behaviorally thermoregulate, are considered.

View Article and Find Full Text PDF

Although the impacts of climate change and invasive species are typically studied in isolation, they likely interact to reduce the viability of plant and animal populations. Indeed, invasive species, by definition, have succeeded in areas outside of their native range and may therefore have higher adaptive capacity relative to native species. Nevertheless, the genetic architecture of the thermal niche, which sets a limit to the potential for populations to evolve rapidly under climate change, has never been measured in an invasive species in its introduced range.

View Article and Find Full Text PDF

The advent of miniaturized biologging devices has provided ecologists with unprecedented opportunities to record animal movement across scales, and led to the collection of ever-increasing quantities of tracking data. In parallel, sophisticated tools have been developed to process, visualize and analyse tracking data; however, many of these tools have proliferated in isolation, making it challenging for users to select the most appropriate method for the question in hand. Indeed, within the r software alone, we listed 58 packages created to deal with tracking data or 'tracking packages'.

View Article and Find Full Text PDF

A growing body of research demonstrates the impacts of invasive alien plants on native animals, but few studies consider thermal effects as a driver of the responses of native organisms. As invasive alien plants establish and alter the composition and arrangement of plant communities, the thermal landscapes available to ectotherms also change. Our study reviews the research undertaken to date on the thermal effects of alien plant invasions on native reptiles, amphibians, insects and arachnids.

View Article and Find Full Text PDF

Linking variation in species' traits to large-scale environmental gradients can lend insight into the evolutionary processes that have shaped functional diversity and future responses to environmental change. Here, we ask how heat and cold tolerance vary as a function of latitude, elevation and climate extremes, using an extensive global dataset of ectotherm and endotherm thermal tolerance limits, while accounting for methodological variation in acclimation temperature, ramping rate and duration of exposure among studies. We show that previously reported relationships between thermal limits and latitude in ectotherms are robust to variation in methods.

View Article and Find Full Text PDF

Laboratory measurements of physiological and demographic tolerances are important in understanding the impact of climate change on species diversity; however, it has been recognized that forecasts based solely on these laboratory estimates overestimate risk by omitting the capacity for species to utilize microclimatic variation via behavioral adjustments in activity patterns or habitat choice. The complex, and often context-dependent nature, of microclimate utilization has been an impediment to the advancement of general predictive models. Here, we overcome this impediment and estimate the potential impact of warming on the fitness of ectotherms using a benefit/cost trade-off derived from the simple and broadly documented thermal performance curve and a generalized cost function.

View Article and Find Full Text PDF

Processing food (e.g. ingestion, digestion, assimilation) requires energy referred to as specific dynamic action (SDA) and is at least partially fuelled by oxidation of the nutrients (e.

View Article and Find Full Text PDF

The precision and the extent of behavioral thermoregulation are likely to provide fitness benefits to ectotherms. Yet the factors driving variation in selected or preferred body temperature (T ) and its usefulness as a proxy for optimal physiological temperature (T ) are still debated. Although T is often conserved among closely related species, substantial variation at the individual, population and species level has also been reported.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers question if climate change is pushing species to their thermal limits and whether these limits can change through natural selection.
  • * To aid this research, the GlobTherm database was created, housing thermal tolerance data for over 2,000 species across various ecosystems, aimed at enhancing understanding of climate impacts on species distribution.
View Article and Find Full Text PDF

The visible spectrum represents a fraction of the sun's radiation, a large portion of which is within the near infrared (NIR). However, wavelengths outside of the visible spectrum that are reflected by coloured tissues have rarely been considered, despite their potential significance to thermal effects. Here, we report the reflectivity from 300 to 2100 nm of differently coloured feathers.

View Article and Find Full Text PDF