Lithium-sulfur batteries are considered one of the most appealing technologies for next-generation energy-storage devices. However, the main issues impeding market breakthrough are the insulating property of sulfur and the lithium-polysulfide shuttle effect, which cause premature cell failure. To face this challenge, we employed an easy and sustainable evaporation method enabling the encapsulation of elemental sulfur within carbon nanohorns as hosting material.
View Article and Find Full Text PDFThe Nobel Prize in Chemistry 2019 recognized the importance of Li-ion batteries and the revolution they allowed to happen during the past three decades. They are part of a broader class of electrochemical energy storage devices, which are employed where electrical energy is needed on demand and so, the electrochemical energy is converted into electrical energy as required by the application. This opens a variety of possibilities on the utilization of energy storage devices, beyond the well-known mobile applications, assisting on the decarbonization of energy production and distribution.
View Article and Find Full Text PDFIn the second part of the review on electrochemical energy storage, the devolvement of batteries is explored. First, fundamental aspects of battery operation will be given, then, different materials and chemistry of rechargeable batteries will be explored, including each component of the cell. In negative electrodes, metallic, intercalation and transformation materials will be addressed.
View Article and Find Full Text PDF