This paper presents a novel method for accelerating the computationally intensive process of point-based holography using consumer grade hardware. By leveraging the parallel processing capabilities of graphics processing units (GPUs) and implementing optimization techniques, the proposed method significantly reduces the time required to generate complex holograms. A comprehensive analysis - including benchmarks and comparative studies - demonstrates the efficiency and effectiveness of this approach.
View Article and Find Full Text PDFThe reconstruction and novel view synthesis of dynamic scenes recently gained increased attention. As reconstruction from large-scale multi-view data involves immense memory and computational requirements, recent benchmark datasets provide collections of single monocular views per timestamp sampled from multiple (virtual) cameras. We refer to this form of inputs as monocularized data.
View Article and Find Full Text PDFIn this paper, we propose a wavelet-based video codec specifically designed for VR displays that enables real-time playback of high-resolution 360° videos. Our codec exploits the fact that only a fraction of the full 360° video frame is visible on the display at any time. To load and decode the video viewport-dependently in real time, we make use of the wavelet transform for intra- as well as inter-frame coding.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
May 2022
In this paper we propose omnidirectional galvanic vestibular stimulation (GVS) to mitigate cybersickness in virtual reality applications. One of the most accepted theories indicates that Cybersickness is caused by the visually induced impression of ego motion while physically remaining at rest. As a result of this sensory mismatch, people associate negative symptoms with VR and sometimes avoid the technology altogether.
View Article and Find Full Text PDF