Publications by authors named "Susan Winks"

This paper describes a five-step synthesis of a carbon-14-labelled pyrazole compound (11). A total of 2.96 MBq of 11 was obtained with the specific activity of 2242.

View Article and Find Full Text PDF

High-throughput screening of a library of small polar molecules against Mycobacterium tuberculosis led to the identification of a phthalimide-containing ester hit compound (1), which was optimized for metabolic stability by replacing the ester moiety with a methyl oxadiazole bioisostere. A route utilizing polymer-supported reagents was designed and executed to explore structure-activity relationships with respect to the N-benzyl substituent, leading to compounds with nanomolar activity. The frontrunner compound (5h) from these studies was well tolerated in mice.

View Article and Find Full Text PDF

A potential anti-TB compound bearing a nitroimidazole moiety from iThemba Pharmaceuticals TB chemical library exhibits promising in vitro activity in the microplate almar blue assay (MABA) with a minimum inhibitory concentration (MIC) value of 3 µg/mL. It is equipotent to the front-line drug Isoniazid, but the compound is less toxic with an IC50 of >100 µg/mL. Therefore, this potential iThemba nitroimidazole, 4-([1,1'-[(14)C6]biphenyl]-4-ylmethyl)-9-nitro-3,4,5,6-tetrahydro-2H-imidazo[2,1-b][1,3,6]oxadiazocine, was radiolabeled with the C-14 isotope.

View Article and Find Full Text PDF

Triage of a set of antimalaria hit compounds, identified through high throughput screening against the Chloroquine sensitive (3D7) and resistant (Dd2) parasite Plasmodium falciparum strains identified several novel chemotypes suitable for hit-to-lead chemistry investigation. The set was further refined through investigation of their in vitro ADME properties, which identified templates with good potential to be developed further as antimalarial agents. One example was profiled in an in vivo murine Plasmodium berghei model of malaria infection.

View Article and Find Full Text PDF

The organosulfur compound ajoene derived from the rearrangement of allicin found in crushed garlic can inhibit the proliferation of tumour cells by inducing G(2)/M cell cycle arrest and apoptosis. We report on the application of a concise four-step synthesis (Hunter et al., 2008 [1]) that allows access to ajoene analogues with the end allyl groups substituted.

View Article and Find Full Text PDF

The title compound, C(7)H(13)NO, forms R(2)(2)(8) N-H...

View Article and Find Full Text PDF