The betacoronavirus genus contains five of the seven human coronaviruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus-HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus), and MERS-CoV (merbecovirus)-, to study betacoronavirus interactions with the PKR-like ER kinase (PERK) pathway of the integrated stress response (ISR)/unfolded protein response (UPR). The PERK pathway becomes activated by an abundance of unfolded proteins within the endoplasmic reticulum (ER), leading to phosphorylation of eIF2α and translational attenuation.
View Article and Find Full Text PDFAims: Some cannabis consumption methods (e.g. smoking, vaping, dabbing) are associated with more harms than others (e.
View Article and Find Full Text PDFMicrobiol Mol Biol Rev
December 2024
SUMMARYHuman coronaviruses cause a range of respiratory diseases, from the common cold (HCoV-229E, HCoV-NL63, HCoV-OC43, and SARS-CoV-2) to lethal pneumonia (SARS-CoV, SARS-CoV-2, and MERS-CoV). Coronavirus interactions with host innate immune antiviral responses are an important determinant of disease outcome. This review compares the host's innate response to different human coronaviruses.
View Article and Find Full Text PDFSince the SARS-CoV-2 outbreak, there have been ongoing efforts to identify antiviral molecules with broad coronavirus activity to combat COVID-19. SARS-CoV-2's main protease (M) is responsible for processing the viral polypeptide into non-structural proteins essential for replication. Here, we present the biological characterization of AB-343, a covalent small-molecule inhibitor of SARS-CoV-2 M with potent activity in both cell-based (EC = 0.
View Article and Find Full Text PDFBackground: Viral infections have long been implicated in the development of chronic rhinosinusitis with nasal polyps (CRSwNP). Given widespread exposure to the common cold coronavirus 229E (HCoV229E), we sought to investigate how HCoV-229E is cleared and stimulates interferon pathways in air-liquid interface (ALI) cultures from patients with CRSwNP.
Objective: The objective of this study was to identify whether viral clearance and ISG expression is different in ALI cultures from donors with CRSwNP compared with controls.
The human brain undergoes rapid development during the first years of life. Beginning in utero, a wide array of biological, social, and environmental factors can have lasting impacts on brain structure and function. To understand how prenatal and early life experiences alter neurodevelopmental trajectories and shape health outcomes, several NIH Institutes, Centers, and Offices collaborated to support and launch the HEALthy Brain and Child Development (HBCD) Study.
View Article and Find Full Text PDFCOVID-19 syndrome is characterized by acute lung injury, hypoxemic respiratory failure, and high mortality. Alveolar type 2 (AT2) cells are essential for gas exchange, repair, and regeneration of distal lung epithelium. We have shown that the causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and other members of the β-coronavirus genus induce an endoplasmic reticulum (ER) stress response in vitro; however, the consequences for host AT2 cell function in vivo are less understood.
View Article and Find Full Text PDFAll respiratory viruses establish primary infections in the nasal epithelium, where efficient innate immune induction may prevent dissemination to the lower airway and thus minimize pathogenesis. Human coronaviruses (HCoVs) cause a range of pathologies, but the host and viral determinants of disease during common cold versus lethal HCoV infections are poorly understood. We model the initial site of infection using primary nasal epithelial cells cultured at an air-liquid interface (ALI).
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of deaths since its emergence in 2019. Innate immune antagonism by lethal CoVs such as SARS-CoV-2 is crucial for optimal replication and pathogenesis. The conserved nonstructural protein 15 (nsp15) endoribonuclease (EndoU) limits activation of double-stranded (ds)RNA-induced pathways, including interferon (IFN) signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L) during diverse CoV infections including murine coronavirus and Middle East respiratory syndrome (MERS)-CoV.
View Article and Find Full Text PDFUnlabelled: The SARS-CoV-2 pandemic was marked with emerging viral variants, some of which were designated as variants of concern (VOCs) due to selection and rapid circulation in the human population. Here, we elucidate functional features of each VOC linked to variations in replication rate. Patient-derived primary nasal cultures grown at air-liquid interface were used to model upper respiratory infection and compared to cell lines derived from human lung epithelia.
View Article and Find Full Text PDFMany viruses, including mammarenaviruses, have evolved mechanisms to counteract different components of the host cell innate immunity, which is required to facilitate robust virus multiplication. The double-stranded RNA (dsRNA) sensor protein kinase receptor (PKR) pathway plays a critical role in the cell anti-viral response. Whether PKR can restrict the multiplication of the Old World mammarenavirus lymphocytic choriomeningitis virus (LCMV) and the mechanisms by which LCMV may counteract the anti-viral functions of PKR have not yet been investigated.
View Article and Find Full Text PDFAll respiratory viruses establish primary infections in the nasal epithelium, where efficient innate immune induction may prevent dissemination to the lower airway and thus minimize pathogenesis. Human coronaviruses (HCoVs) cause a range of pathologies, but the host and viral determinants of disease during common cold versus lethal HCoV infections are poorly understood. We model the initial site of infection using primary nasal epithelial cells cultured at air-liquid interface (ALI).
View Article and Find Full Text PDFIn the United States (US), biosafety and biosecurity oversight of research on viruses is being reappraised. Safety in virology research is paramount and oversight frameworks should be reviewed periodically. Changes should be made with care, however, to avoid impeding science that is essential for rapidly reducing and responding to pandemic threats as well as addressing more common challenges caused by infectious diseases.
View Article and Find Full Text PDFMany viruses, including mammarenaviruses, have evolved mechanisms to counteract different components of the host cell innate immunity, which is required to facilitate robust virus multiplication. The double strand (ds)RNA sensor protein kinase receptor (PKR) pathway plays a critical role in the cell antiviral response. Whether PKR can restrict the multiplication of the Old World mammarenavirus lymphocytic choriomeningitis virus (LCMV) and the mechanisms by which LCMV may counteract the antiviral functions of PKR have not yet been investigated.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of deaths since emerging in 2019. Innate immune antagonism by lethal CoVs such as SARS-CoV-2 is crucial for optimal replication and pathogenesis. The conserved nonstructural protein 15 (nsp15) endoribonuclease (EndoU) limits activation of double-stranded (ds)RNA-induced pathways, including interferon (IFN) signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L) during diverse CoV infections including murine coronavirus and Middle East respiratory syndrome (MERS)-CoV.
View Article and Find Full Text PDFHCoV-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1 are four of the seven known human coronaviruses (HCoVs) and, unlike the highly pathogenic SARS-CoV, MERS-CoV, and SARS-CoV-2, these four so-called seasonal HCoVs generally cause mild upper-respiratory-tract illness. As Biosafety Level 2 (BSL-2) pathogens, the seasonal HCoVs are more accessible and can be used as surrogates for studying the highly pathogenic HCoVs. However, scientists have for many years found these difficult to study because of the lack of a universal culture system and the inability of typical culture methods to yield high-titer infectious stocks.
View Article and Find Full Text PDFInsectivorous Old World horseshoe bats (Rhinolophus spp.) are the likely source of the ancestral SARS-CoV-2 prior to its spillover into humans and causing the COVID-19 pandemic. Natural coronavirus infections of bats appear to be principally confined to the intestines, suggesting fecal-oral transmission; however, little is known about the biology of SARS-related coronaviruses in bats.
View Article and Find Full Text PDFThree highly pathogenic human coronaviruses (HCoVs) - SARS-CoV (2002), MERS-CoV (2012), and SARS-CoV-2 (2019) - have emerged and caused significant public health crises in the past 20 years. Four additional HCoVs cause a significant portion of common cold cases each year (HCoV-NL63, -229E, -OC43, and -HKU1), highlighting the importance of studying these viruses in physiologically relevant systems. HCoVs enter the respiratory tract and establish infection in the nasal epithelium, the primary site encountered by all respiratory pathogens.
View Article and Find Full Text PDFUnlabelled: Double-stranded RNA (dsRNA) is a pathogen associated molecular pattern recognized by multiple pattern recognition receptors and induces innate immune responses. Viral infections can generate dsRNA during virus replication. Genetic mutations can also lead to endogenous dsRNA accumulation.
View Article and Find Full Text PDFThe SARS-CoV-2 pandemic was marked with emerging viral variants, some of which were designated as variants of concern (VOCs) due to selection and rapid circulation in the human population. Here we elucidate functional features of each VOC linked to variations in replication rate. Patient-derived primary nasal cultures grown at air-liquid-interface (ALI) were used to model upper-respiratory infection and human lung epithelial cell lines used to model lower-respiratory infection.
View Article and Find Full Text PDF