Publications by authors named "Susan W Nicolson"

Introduction: A changing environment can select on life-history traits and trade-offs in a myriad of ways. For example, global warming may shift phenology and thus the availability of host-plants. This may alter selection on survival and fertility schedules in herbivorous insects.

View Article and Find Full Text PDF
Article Synopsis
  • Honey bees have developed multiple feeding strategies to efficiently extract nectar from flowers with varying corolla depths and sugar concentrations.
  • They can use their hairy tongues for dipping, capillary loading, or attaching their tongue to the flower to suck nectar directly.
  • This multifunctional feeding apparatus allows honey bees to adapt to different floral resources, improving their foraging efficiency and flexibility in various environments.
View Article and Find Full Text PDF

Honey bees process nectar into honey by active evaporation on the tongue and passive evaporation involving nest ventilation and fanning behaviour, as well as enzymatic action. The elimination of excess water from nectar carries considerable energetic costs. The concentration of the nectar load is assumed to remain constant during transport.

View Article and Find Full Text PDF
Sweet solutions: nectar chemistry and quality.

Philos Trans R Soc Lond B Biol Sci

June 2022

Nectar, the main floral reward for pollinators, varies greatly in composition and concentration. The assumption that nectar quality is equivalent to its sugar (energy) concentration is too simple. Diverse non-sugar components, especially amino acids and secondary metabolites, play various roles in nutrition and health of pollinators.

View Article and Find Full Text PDF

Evidence from the last few decades indicates that pollinator abundance and diversity are at risk, with many species in decline. Anthropogenic impacts have been the focus of much recent work on the causes of these declines. However, natural processes, from plant chemistry, nutrition and microbial associations to landscape and habitat change, can also profoundly influence pollinator health.

View Article and Find Full Text PDF

The expression of life-history traits, such as lifespan or reproductive effort, is tightly correlated with the amount and blend of macronutrients that individuals consume. In a range of herbivorous insects, consuming high protein to carbohydrate ratios (P:C) decreases lifespan but increases female fecundity. In other words, females face a resource-based trade-off between lifespan and fecundity.

View Article and Find Full Text PDF
Article Synopsis
  • Noninvasive measurement of fecal glucocorticoid metabolites (fGCM) can assess stress in birds under high temperatures, but is mainly feasible for habituated populations.
  • An alternative method was tested using wild-caught birds in manipulated thermal environments, focusing on three species from southern Africa and measuring their fGCM levels under varying temperatures from 30°C to 44°C.
  • Results showed no significant stress response in the captive birds at high temperatures, suggesting that captivity and environmental differences limit the usefulness of this approach for studying stress in free-ranging birds.
View Article and Find Full Text PDF

The major lineages of nectar-feeding birds (hummingbirds, sunbirds, honeyeaters, flowerpiercers, and lorikeets) are considered examples of convergent evolution. We compared sucrose digestion capacity and sucrase enzymatic activity per unit intestinal surface area among 50 avian species from the New World, Africa, and Australia, including 20 nectarivores. With some exceptions, nectarivores had smaller intestinal surfaces, higher sucrose hydrolysis capacity, and greater sucrase activity per unit intestinal area.

View Article and Find Full Text PDF

Optimal concentrations for nectar drinking are limited by the steep increase in the viscosity of sugar solutions with concentration. However, nectar viscosity is inversely related to temperature, which suggests there are advantages to foraging from flowers that are warmer than the surrounding air. The honey bee ( L.

View Article and Find Full Text PDF

In herbivorous insects, the degree of host specialisation may be one ecological factor that shapes lifespan. Because host specialists can only exploit a limited number of plants, their lifecycle should be synchronised with host phenology to allow reproduction when suitable hosts are available. For species not undergoing diapause or dormancy, one strategy to achieve this could be evolving long lifespans.

View Article and Find Full Text PDF

Adult holometabolous insects may derive metabolic resources from either larval or adult feeding, but little is known of whether adult diets can compensate for deficiencies in the larval diet in terms of stress resistance. We investigated how stress resistance is affected and compensated for by diet across life stages in the marula fruit fly (Diptera: Tephritidae). Larvae were fed diets containing either 8% torula yeast, the standard diet used to rear this species, or 1% yeast (low protein content similar to known host fruit).

View Article and Find Full Text PDF

For two decades, neonicotinoid insecticides have been extensively used worldwide. Targeting neuronal receptors, they have deleterious effects on the behaviour and physiology of many insects. Bees are exposed to these insecticides in pollen and nectar while providing pollination services to agricultural crops, and neonicotinoids have been shown to impair navigation and decrease their foraging activity.

View Article and Find Full Text PDF

Pollen, the main protein source for honey bees, is mixed with regurgitated nectar or honey during collection and then stored as 'bee bread' before its consumption, mainly by young nurse workers. It has been suggested that storage of pollen improves its nutritional value and digestibility, but there is little evidence for such changes. We fed two fresh pollen types of different protein content (aloe and sunflower), and two stored pollen types (sunflower and a mixed pollen), to young caged worker bees.

View Article and Find Full Text PDF

In insects, lifespan and reproduction are strongly associated with nutrition. The ratio and amount of nutrients individuals consume affect their life expectancy and reproductive investment. The geometric framework (GF) enables us to explore how animals regulate their intake of multiple nutrients simultaneously and determine how these nutrients interact to affect life-history traits of interest.

View Article and Find Full Text PDF

Honey bees feed on floral nectar and pollen that they store in their colonies as honey and bee bread. Social division of labor enables the collection of stores of food that are consumed by within-hive bees that convert stored pollen and honey into royal jelly. Royal jelly and other glandular secretions are the primary food of growing larvae and of the queen but are also fed to other colony members.

View Article and Find Full Text PDF

The influence of pheromones on insect physiology and behavior has been thoroughly reported for numerous aspects, such as attraction, gland development, aggregation, mate and kin recognition. Brood pheromone (BP) is released by honey bee larvae to indicate their protein requirements to the colony. Although BP is known to modulate pollen and protein consumption, which in turn can affect physiological and morphological parameters, such as hypopharyngeal gland (HPG) development and ovarian activation, few studies have focused on the effect of BP on nutritional balance.

View Article and Find Full Text PDF

Despite potential links between pesticides and bee declines, toxicology information on honey bee larvae (Apis mellifera) is scarce and detoxification mechanisms in this development stage are virtually unknown. Larvae are exposed to natural and synthetic toxins present in pollen and nectar through consumption of brood food. Due to the characteristic intensive brood care displayed by honey bees, which includes progressive feeding throughout larval development, it is generally assumed that larvae rely on adults to detoxify for them and exhibit a diminished detoxification ability.

View Article and Find Full Text PDF

Honey bees (Apis mellifera) are generalist pollinators that forage for nectar and pollen of a very large variety of plant species, exposing them to a diverse range of secondary metabolites produced as chemical defences against herbivory. Honey bees can tolerate high levels of many of these toxic compounds, including the alkaloid nicotine, in their diet without incurring apparent fitness costs. Very little is known about the underlying detoxification processes mediating this tolerance.

View Article and Find Full Text PDF

Thiamethoxam is a widely used neonicotinoid pesticide that, as agonist of the nicotinic acetylcholine receptors, has been shown to elicit a variety of sublethal effects in honey bees. However, information concerning neonicotinoid effects on honey bee thermoregulation is lacking. Thermoregulation is an essential ability for the honey bee that guarantees the success of foraging and many in-hive tasks, especially brood rearing.

View Article and Find Full Text PDF

Over a decade, declines in honey bee colonies have raised worldwide concerns. Several potentially contributing factors have been investigated, e.g.

View Article and Find Full Text PDF

Nectarivorous birds typically consume smaller meals of more concentrated than of less concentrated sugar solutions. It is not clear, however, whether they use taste to decide how much to consume or whether they base this decision on post-ingestive feedback. Taste, a cue to nectar concentration, is available to nectarivores during ingestion whereas post-ingestive information about resource quality becomes available only after a meal.

View Article and Find Full Text PDF

Insecticides are thought to be among the major factors contributing to current declines in bee populations. However, detoxification mechanisms in healthy, unstressed honey bees are poorly characterised. Alkaloids are naturally encountered in pollen and nectar, and we used nicotine as a model compound to identify the mechanisms involved in detoxification processes in honey bees.

View Article and Find Full Text PDF

Animals carefully regulate the amount of protein that they consume. The quantity of individual essential amino acids (EAAs) obtained from dietary protein depends on the protein source, but how the proportion of EAAs in the diet affects nutrient balancing has rarely been studied. Recent research using the Geometric Framework for Nutrition has revealed that forager honeybees who receive much of their dietary EAAs from floral nectar and not from solid protein have relatively low requirements for dietary EAAs.

View Article and Find Full Text PDF

Over-consuming amino acids is associated with reduced survival in many species, including honeybees. The mechanisms responsible for this are unclear but one possibility is that excessive intake of amino acids increases oxidative damage. If this is the case, antioxidant supplementation may help reduce the survival costs of high amino acid intake.

View Article and Find Full Text PDF

Herbivory in some Nicotiana species is known to induce alkaloid production. This study examined herbivore-induced defenses in the nornicotine-rich African tobacco N. africana, the only Nicotiana species indigenous to Africa.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session8momplonmpvoc4bojk2rgi03cl85v6cj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once