Publications by authors named "Susan Twine"

We present an integrated immunopeptidomics and proteomics study of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection to comprehensively decipher the changes in host cells in response to viral infection. Immunopeptidomics analysis identified viral antigens presented by host cells through both class I and class II MHC system for recognition by the adaptive immune system. The host proteome changes were characterized by quantitative proteomics and glycoproteomics and from these data, the activation of toll-like receptor 3-interferon pathway was identified.

View Article and Find Full Text PDF

The rapid emergence of antimicrobial resistance presents serious health challenges to the management of infectious diseases, a problem that is further exacerbated by slowing rates of antimicrobial drug discovery in recent years. The phenomenon of collateral sensitivity (CS), whereby resistance to one drug is accompanied by increased sensitivity to another, provides new opportunities to address both these challenges. Here, we present a high-throughput screening platform termed Collateral Sensitivity Profiling (CSP) to map the difference in bioactivity of large chemical libraries across 29 drug-resistant strains of E.

View Article and Find Full Text PDF

Spontaneous oxidation of β-carotene yields a polymer-rich product (OxBC) together with minor amounts of many apocarotenoids. OxBC's activity extends β-carotene's benefits beyond vitamin A, finding utility in supporting health in livestock, pets, and humans. Although the naturally occurring form of OxBC is consumed in foods and feeds, a direct demonstration of synthetic OxBC's safety provides additional support for its usage.

View Article and Find Full Text PDF

The study of glycosylation in prokaryotes is a rapidly growing area. Bacteria harbor different glycosylated structures on their surface whose glycans constitute a strain-specific barcode. The associated glycans show higher diversity in sugar composition and structure than those of eukaryotes and are important in bacterial-host recognition processes and interaction with the environment.

View Article and Find Full Text PDF

Pediatric ulcerative colitis (UC) is a distinct type of inflammatory bowel disease with severe disease activity and rapid progression, which can lead to detrimental life-long consequences. The pathogenesis of pediatric UC remains unclear, although dysbiosis of the gut microbiota has been considered an important factor. In this study, we collected intestinal mucosal-luminal interface microbiota samples from a cohort of treatment-naïve pediatric UC or control patients and used two different mass spectrometry-based glycomic approaches to examine the N-glycans that were associated with the microbiota.

View Article and Find Full Text PDF

Lentiviral vectors (LVs) are a powerful tool for gene and cell therapy and human embryonic kidney cells (HEK293) have been extensively used as a platform for production of these vectors. Like most cells and cellular tissues, HEK293 cells release extracellular vesicles (EVs). EVs released by cells share similar size, biophysical characteristics and even a biogenesis pathway with cell-produced enveloped viruses, making it a challenge to efficiently separate EVs from LVs.

View Article and Find Full Text PDF

Polar flagella from mesophilic strains have previously been shown to be modified with a range of glycans. Mass spectrometry studies of purified polar flagellins suggested the glycan typically includes a putative pseudaminic acid like derivative; while some strains are modified with this single monosaccharide, others modified with a heterologous glycan. In the current study, we demonstrate that genes involved in polar flagella glycosylation are clustered in highly polymorphic genomic islands flanked by pseudaminic acid biosynthetic genes ().

View Article and Find Full Text PDF

The Gypsum Hill (GH) springs on Axel Heiberg Island in the Canadian high Arctic are host to chemolithoautotrophic, sulfur-oxidizing streamers that flourish in the high Arctic winter in water temperatures from -1.3 to 7°C with ~8% salinity in a high Arctic winter environment with air temperatures commonly less than -40°C and an average annual air temperature of -15°C. Metagenome sequencing and binning of streamer samples produced a 96% complete Thiomicrorhabdus sp.

View Article and Find Full Text PDF

Immunotherapy with neoantigens presented by major histocompatibility complex (MHC) is one of the most promising approaches in cancer treatment. Using this approach, cancer vaccines can be designed to target tumor-specific mutations that are not found in normal tissues. Clinical trials have demonstrated an increased immune response and eradication of tumors after injecting synthetic peptides selected from the immunopeptidome.

View Article and Find Full Text PDF

Glycosylation is one of the most important post-translational modifications in biological systems. Current glycoproteome methods mainly focus on qualitative identification of glycosylation sites or intact glycopeptides. However, the systematic quantitation of glycoproteins has remained largely unexplored.

View Article and Find Full Text PDF

The mammalian immune system acts to protect the body from harmful diseases ranging from cancer to infection. Differentially expressed proteins as a result of such an immune response can shed light on the mechanism of disease or serve as biomarkers. These biomarkers can be used in a diagnostic capacity or as correlates of protection following vaccination.

View Article and Find Full Text PDF

The study of the humoral immune response to infectious and chronic diseases is important for understanding the disease progression, identification of protective antigens, vaccine development, and discovery of biomarkers for early diagnosis. Proteomic approaches, including serological proteome analysis (SERPA), have been used to identify the repertoire of immunoreactive proteins in various diseases. In this chapter, we provide an outline of the SERPA approach, using the analysis of sera from mice vaccinated with a live attenuated tularemia vaccine as an example.

View Article and Find Full Text PDF

The varied landscape of the adaptive immune response is determined by the peptides presented by immune cells, derived from viral or microbial pathogens or cancerous cells. The study of immune biomarkers or antigens is not new, and classical methods such as agglutination, enzyme-linked immunosorbent assay, or Western blotting have been used for many years to study the immune response to vaccination or disease. However, in many of these traditional techniques, protein or peptide identification has often been the bottleneck.

View Article and Find Full Text PDF

One of the concerns associated with the use of influenza virus-like particles (VLPs) as vaccine candidate or delivery system is their heterogeneous composition. Enveloped VLPs take up the host cell membrane at the budding site carrying out not only the viral antigenic proteins but also host proteins. In addition, the intrinsic nature of cells to produce membrane derived vesicles or extracellular vesicles (EVs), which have similar size to the VLPs, makes VLP purification process challenging.

View Article and Find Full Text PDF

Rationale: Porous graphic carbon chromatography (PGC) has a different mechanism in the retention of tryptic peptides compared with reversed-phase chromatography and in this study we show that coupling PGC with tandem mass spectrometry offer advantages for the quantitation of phosphorylation stoichiometry and characterization of site-specific glycosylation.

Methods: Digests of protein standards (horse myoglobin, bovine fetuin and β-casein) were analyzed with a capillary liquid chromatography/tandem mass spectrometry (LC/MS/MS) system by coupling an Agilent 1100 HPLC system to a Synapt G2-Si HDMS (Waters). Peptides were separated using a HyperCarb PGC column (300 μm i.

View Article and Find Full Text PDF

Neoantigen-based therapeutic vaccines have a high potential impact on tumor eradication and patient survival. Mass spectrometry (MS)-based immunopeptidomics has the capacity to identify tumor-associated epitopes and pinpoint mutation-bearing major histocompatibility complex (MHC)-binding peptides. This approach presents several challenges, including the identification of low-abundance peptides.

View Article and Find Full Text PDF

is the etiologic agent of tularemia, and subspecies (type A) is the most virulent subspecies. The live vaccine strain (LVS) of subspecies produces a capsule-like complex (CLC) that consists of a large variety of glycoproteins. Expression of the CLC is greatly enhanced when the bacteria are subcultured in and grown on chemically defined medium.

View Article and Find Full Text PDF

Though eukaryotic glycoproteins have been studied since their discovery in the 1930s, the first bacterial glycoprotein was not identified until the 1970s. As a result, their role in bacterial pathogenesis is still not well understood and they remain an understudied component of bacterial virulence. In recent years, mass spectrometry has emerged as a leading technology for the study of bacterial glycoproteins, largely due to its sensitivity and versatility.

View Article and Find Full Text PDF

Glycosylation of flagellins is a well recognized property of many bacterial species. In this study, we describe the structural characterization of novel flagellar glycans from a number of hypervirulent strains of C. difficile We used mass spectrometry (nano-LC-MS and MS/MS analysis) to identify a number of putative glycopeptides that carried a variety of glycoform substitutions, each of which was linked through an initial N-acetylhexosamine residue to Ser or Thr.

View Article and Find Full Text PDF

There is an ongoing race between bacterial evolution and medical advances. Pathogens have the advantages of short generation times and horizontal gene transfer that enable rapid adaptation to new host environments and therapeutics that currently outpaces clinical research. Antibiotic resistance, the growing impact of nosocomial infections, cancer-causing bacteria, the risk of zoonosis, and the possibility of biowarfare all emphasize the increasingly urgent need for medical research focussed on bacterial pathogens.

View Article and Find Full Text PDF

Polar and but not lateral flagellin proteins from Aeromonas hydrophila strain AH-1 (serotype O11) were found to be glycosylated. Top-down mass spectrometry studies of purified polar flagellins suggested the presence of a 403 Da glycan of mass. Bottom-up mass spectrometry studies showed the polar flagellin peptides to be modified with 403 Da glycans in O-linkage.

View Article and Find Full Text PDF

Vaccine biomarkers are critical to many aspects of vaccine development and licensure, including bridging findings in pre-clinical studies to clinical studies, predicting potential adverse events, and predicting vaccine efficacy. Despite advances in our understanding of various biological pathways, and advances in systems analyses of the immune response, there remains much to learn about qualitative and quantitative aspects of the human host response to vaccination. To stimulate discussion and identify opportunities for collaborative ways to advance the field of vaccine biomarkers, A Next Generation Vaccine Biomarker workshop was held in Ottawa.

View Article and Find Full Text PDF

Plesiomonas shigelloides is the unique member of the Enterobacteriaceae family able to produce polar flagella when grow in liquid medium and lateral flagella when grown in solid or semisolid media. In this study on P. shigelloides 302-73 strain, we found two different gene clusters, one exclusively for the lateral flagella biosynthesis and the other one containing the biosynthetic polar flagella genes with additional putative glycosylation genes.

View Article and Find Full Text PDF

Helicobacter pylori is motile by means of polar flagella, and this motility has been shown to play a critical role in pathogenicity. The major structural flagellin proteins have been shown to be glycosylated with the nonulosonate sugar, pseudaminic acid (Pse). This glycan is unique to microorganisms, and the process of flagellin glycosylation is required for H.

View Article and Find Full Text PDF