Am J Physiol Cell Physiol
October 2006
Secretion of Cl(-) and K(+) in the colonic epithelium operates through a cellular mechanism requiring K(+) channels in the basolateral and apical membranes. Transepithelial current [short-circuit current (I(sc))] and conductance (G(t)) were measured for isolated distal colonic mucosa during secretory activation by epinephrine (Epi) or PGE(2) and synergistically by PGE(2) and carbachol (PGE(2) + CCh). TRAM-34 at 0.
View Article and Find Full Text PDFThe cellular mechanism for Cl(-) and K(+) secretion in the colonic epithelium requires K(+) channels in the basolateral and apical membranes. Colonic mucosa from guinea pig and rat were fixed, sectioned, and then probed with antibodies to the K(+) channel proteins K(V)LQT1 (Kcnq1) and minK-related peptide 2 (MiRP2, Kcne3). Immunofluorescence labeling for Kcnq1 was most prominent in the lateral membrane of crypt cells in rat colon.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
April 2003
Cell-attached recordings revealed Cl(-) channel activity in basolateral membrane of guinea pig distal colonic crypts isolated from basement membrane. Outwardly rectified currents ((gp)Cl(or)) were apparent with a single-channel conductance (gamma) of 29 pS at resting membrane electrical potential; another outward rectifier with gamma of 24 pS was also observed ( approximately 25% of (gp)Cl(or)). At a holding potential of -80 mV gamma was 18 pS for both (gp)Cl(or) currents, and at +80 mV gamma was 67 and 40 pS, respectively.
View Article and Find Full Text PDF