The effect of an electric field on local domain structure near a 24° tilt grain boundary in a 200 nm-thick Pb(ZrTi)O bi-crystal ferroelectric film was probed using synchrotron nanodiffraction. The bi-crystal film was grown epitaxially on SrRuO-coated (001) SrTiO 24° tilt bi-crystal substrates. From the nanodiffraction data, real-space maps of the ferroelectric domain structure around the grain boundary prior to and during application of a 200 kV cm electric field were reconstructed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Boron (B)-substituted wurtzite AlN (AlBN) is a recently discovered wurtzite ferroelectric material that offers several advantages over ferroelectric HfZrO and PbZrTiO. Such benefits include a relatively low growth temperature as well as a thermally stable, and thickness-stable ferroelectric polarization; these factors are promising for the development of ferroelectric nonvolatile random-access memory (FeRAM) that are CMOS-compatible, scalable, and reliable for storing data in harsh environments. However, wurtzite ferroelectric materials may undergo exacerbated self-heating upon polarization switching relative to other ferroelectric materials; the larger energy loss is anticipated due to the higher coercive field and remanent polarization.
View Article and Find Full Text PDFLead zirconate titanate (PZT) films with high Nb concentrations (6-13 mol%) were grown by chemical solution deposition. In concentrations up to 8 mol% Nb, the films self-compensate the stoichiometry; single phase films were grown from precursor solutions with 10 mol% PbO excess. Higher Nb concentrations induced multi-phase films unless the amount of excess PbO in the precursor solution was reduced.
View Article and Find Full Text PDFFerroelectric wurtzites have the potential to revolutionize modern microelectronics because they are easily integrated with multiple mainstream semiconductor platforms. However, the electric fields required to reverse their polarization direction and unlock electronic and optical functions need substantial reduction for operational compatibility with complementary metal-oxide semiconductor (CMOS) electronics. To understand this process, we observed and quantified real-time polarization switching of a representative ferroelectric wurtzite (AlBN) at the atomic scale with scanning transmission electron microscopy.
View Article and Find Full Text PDFCorrection for 'Anomalously abrupt switching of wurtzite-structured ferroelectrics: simultaneous non-linear nucleation and growth model' by Keisuke Yazawa , , 2023, https://doi.org/10.1039/D3MH00365E.
View Article and Find Full Text PDFFerroelectric polarization switching is one common example of a process that occurs nucleation and growth, and understanding switching kinetics is crucial for applications such as ferroelectric memory. Here we describe and interpret anomalous switching dynamics in the wurtzite-structured nitride thin film ferroelectrics AlScN and AlBN using a general model that can be directly applied to other abrupt transitions that proceed nucleation and growth. When substantial growth and impingement occur while nucleation rate is increasing, such as in these wurtzite-structured ferroelectrics under high electric fields, abrupt polarization reversal leads to very large Avrami coefficients (, = 11), inspiring an extension of the KAI (Kolmogorov-Avrami-Ishibashi) model.
View Article and Find Full Text PDFAn automated experiment in multimodal imaging to probe structural, chemical, and functional behaviors in complex materials and elucidate the dominant physical mechanisms that control device function is developed and implemented. Here, the emergence of non-linear electromechanical responses in piezoresponse force microscopy (PFM) is explored. Non-linear responses in PFM can originate from multiple mechanisms, including intrinsic material responses often controlled by domain structure, surface topography that affects the mechanical phenomena at the tip-surface junction, and the presence of surface contaminants.
View Article and Find Full Text PDFThe receive sensitivity of lead zirconate titanate (PZT) piezoelectric micromachined ultrasound transducers (PMUTs) was improved by applying a DC bias during operation. The PMUT receive sensitivity is governed by the voltage piezoelectric coefficient, . With applied DC biases (up to 15 V) on a 2 μm PbZrTiO film, e increased 1.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
April 2022
A family of three phase, polymer-ceramic-metal (Poly-cer-met) electrically conducting composites was developed via cold sintering for acoustic matching application in medical ultrasound transducers. A range of acoustic impedance ( Z ) between MRayl with low attenuation (<3.5 dB/mm, measured at 10 MHz) was achieved in composites of zinc oxide, silver, and in thermoplastic polymers like Ultem polyetherimide (PEI) or polytetrafluoroethylene (PTFE) at sintering pressure less than 50 MPa and temperature of 150 °C.
View Article and Find Full Text PDFIEEE Open J Ultrason Ferroelectr Freq Control
August 2022
Interest in utilizing ultrasound (US) transducers for non-invasive neuromodulation treatment, including for low intensity transcranial focused ultrasound stimulation (tFUS), has grown rapidly. The most widely demonstrated US transducers for tFUS are either bulk piezoelectric transducers or capacitive micromachine transducers (CMUT) which require high voltage excitation to operate. In order to advance the development of the US transducers towards small, portable devices for safe tFUS at large scale, a low voltage array of US transducers with beam focusing and steering capability is of interest.
View Article and Find Full Text PDFRadio frequency (RF) microelectromechanical systems (MEMS) based on AlScN are replacing AlN-based devices because of their higher achievable bandwidths, suitable for the fifth-generation (5G) mobile network. However, overheating of AlScN film bulk acoustic resonators (FBARs) used in RF MEMS filters limits power handling and thus the phone's ability to operate in an increasingly congested RF environment while maintaining its maximum data transmission rate. In this work, the ramifications of tailoring of the piezoelectric response and microstructure of AlScN films on the thermal transport have been studied.
View Article and Find Full Text PDFWe report flexible thin-film lead zirconate titanate (PZT)-based ultrasonic transducers on polyimide substrates. The transducers are bar resonators designed to operate in the width extension mode. The active elements are 1 µm thick PZT films that were crystallized on Si substrates at 700 °C and transferred to 5 µm thick solution-cast polyimide via dissolution of an underlying release layer.
View Article and Find Full Text PDFPiezoelectric micromachined ultrasound transducers (PMUT) incorporating lead zirconate titanate PbZrTiO (PZT) thin films were investigated for miniaturized high-frequency ultrasound systems. A recently developed process to remove a PMUT from an underlying silicon (Si) substrate has enabled curved arrays to be readily formed. This research aimed to improve the design of flexible PMUT arrays using PZFlex, a finite element method software package.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
February 2021
Ferroelectric films are often constrained by their substrates and subject to scaling effects, including suppressed dielectric permittivity. In this work, the thickness dependence of intrinsic and extrinsic contributions to the dielectric properties was elucidated. A novel approach to quantitatively deconstruct the relative permittivity into three contributions (intrinsic, reversible extrinsic, and irreversible extrinsic) was developed using a combination of X-ray diffraction (XRD) and Rayleigh analysis.
View Article and Find Full Text PDF(K Na )NbO (KNN) is a promising lead-free alternative for ferroelectric thin films such as Pb(Zr,Ti)O . One main drawback is its high leakage current density at high electric fields, which has been previously linked to alkali non-stoichiometry. This paper compares three acetate-based chemical solution synthesis and deposition methods for 0.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
April 2020
A linear piezoelectric micromachined ultrasound transducer (PMUT) array was fabricated and integrated into a device for photoacoustic imaging (PAI) of tissue phantoms. The PMUT contained 65 array elements, with each element having 60 diaphragms of [Formula: see text] diameter and [Formula: see text] pitch. A lead zirconate titanate (PZT) thin film was used as the piezoelectric layer.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
December 2019
This paper presents an autonomous multi-input (multi-beam) reconfigurable power-management chip for optimal energy harvesting from weak multi-axial human motion using a multi-beam piezoelectric energy harvester (PEH). The proposed chip adaptively operates in either voltage-mode or synchronous-electrical-charge-extraction-mode (VM-SECE) to improve overall efficiency, extract maximum energy regardless of the PEH beams' impedance/voltage/frequency variations, and protect the chip against large inputs, eliminating the need for high-voltage processes. It can simultaneously harvest energy from up to 6 beams using only one shared off-chip inductor.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2019
Additive manufacturing has dramatically transformed the design and fabrication of advanced objects. Printed electronics-an additive thin-film processing technology-aims to realize low-cost, large-area electronics, and fabrication of devices with highly customized architectures. Recent advances in printing technology have led to several innovative applications; however, layer-on-layer deposition persists as a challenging issue.
View Article and Find Full Text PDFThe recently proposed dynamical multiferroic effect describes the generation of magnetization from temporally varying electric polarization. Here, we show that the effect can lead to a magnetic field at moving ferroelectric domain walls, where the rearrangement of ions corresponds to a rotation of ferroelectric polarization in time. We develop an expression for the dynamical magnetic field, and calculate the relevant parameters for the example of 90° and 180° domain walls, as well as for polar skyrmions, in BaTiO_{3}, using a combination of density functional theory and phenomenological modeling.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
January 2020
A complementary metal-oxide-semiconductor (CMOS) application-specific integrated circuit (ASIC) has been developed to generate arbitrary, dynamic phase patterns for acoustic hologram applications. An experimental prototype has been fabricated to demonstrate phase shaping. It comprises a cascadable 1 ×9 array of identical, independently controlled signal generators implemented in a 0.
View Article and Find Full Text PDFIn this work, the design, fabrication, and characterization of piezoelectric micromachined ultrasound transducer (PMUT) arrays for photoacoustic imaging applications are reported. An 80-element linear PMUT array with each element having 53 PMUT cells of 125 μm cell diameter were fabricated using 650 nm thick lead zirconate titanate (PZT) as the active piezoelectric layer. The PMUTs are designed to operate at ~10 MHz resonant frequency.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
October 2019
Lead zirconate titanate (PZT)-based piezoelectric micromachined ultrasonic transducers (PMUTs) for particle manipulation applications were designed, fabricated, characterized, and tested. The PMUTs had a diaphragm diameter of 60 [Formula: see text], a resonant frequency of ~8 MHz, and an operational bandwidth (BW) of 62.5%.
View Article and Find Full Text PDFMethylammonium lead iodide (MAPbI) exhibits exceptional photovoltaic performance, but there remains substantial controversy over the existence and impact of ferroelectricity on the photovoltaic response. We confirm ferroelectricity in MAPbI single crystals and demonstrate mediation of the electronic response by ferroelectric domain engineering. The ferroelectric response sharply declines above 57°C, consistent with the tetragonal-to-cubic phase transition.
View Article and Find Full Text PDF