Publications by authors named "Susan Tappan"

The Stimulating Peripheral Activity to Relieve Conditions (SPARC) program is a U.S. National Institutes of Health (NIH) funded effort to enhance our understanding of the neural circuitry responsible for visceral control.

View Article and Find Full Text PDF

Nociceptive afferent axons innervate the stomach and send signals to the brain and spinal cord. Peripheral nociceptive afferents can be detected with a variety of markers (e.g.

View Article and Find Full Text PDF

Nociceptive afferent axons innervate the stomach and send signals to the brain and spinal cord. Peripheral nociceptive afferents can be detected with a variety of markers [e.g.

View Article and Find Full Text PDF

The sympathetic nervous system is crucial for controlling multiple cardiac functions. However, a comprehensive, detailed neuroanatomical map of the sympathetic innervation of the heart is unavailable. Here, we used a combination of state-of-the-art techniques, including flat-mount tissue processing, immunohistochemistry for tyrosine hydroxylase (TH, a sympathetic marker), confocal microscopy and Neurolucida 360 software to trace, digitize, and quantitatively map the topographical distribution of the sympathetic postganglionic innervation in whole atria of C57Bl/6 J mice.

View Article and Find Full Text PDF

The stimulating peripheral activity to relieve conditions (SPARC) program is a US National Institutes of Health-funded effort to improve our understanding of the neural circuitry of the autonomic nervous system (ANS) in support of bioelectronic medicine. As part of this effort, the SPARC project is generating multi-species, multimodal data, models, simulations, and anatomical maps supported by a comprehensive knowledge base of autonomic circuitry. To facilitate the organization of and integration across multi-faceted SPARC data and models, SPARC is implementing the findable, accessible, interoperable, and reusable (FAIR) data principles to ensure that all SPARC products are findable, accessible, interoperable, and reusable.

View Article and Find Full Text PDF

Cerebral vascular injury as a consequence of blast-induced traumatic brain injury is primarily the result of blast wave-induced mechanical disruptions within the neurovascular unit. In rodent models of blast-induced traumatic brain injury, chronic vascular degenerative processes are associated with the development of an age-dependent post-traumatic stress disorder-like phenotype. To investigate the evolution of blast-induced chronic vascular degenerative changes, Long-Evans rats were blast-exposed (3 × 74.

View Article and Find Full Text PDF

We developed and analyzed a single cell scale anatomical map of the rat intrinsic cardiac nervous system (ICNS) across four male and three female hearts. We find the ICNS has a reliable structural organizational plan across individuals that provide the foundation for further analyses of the ICNS in cardiac function and disease. The distribution of the ICNS was evaluated by 3D visualization and data-driven clustering.

View Article and Find Full Text PDF

The Data and Resource Center (DRC) of the NIH-funded SPARC program is developing databases, connectivity maps, and simulation tools for the mammalian autonomic nervous system. The experimental data and mathematical models supplied to the DRC by the SPARC consortium are curated, annotated and semantically linked via a single knowledgebase. A data portal has been developed that allows discovery of data and models both via semantic search and via an interface that includes Google Map-like 2D flatmaps for displaying connectivity, and 3D anatomical organ scaffolds that provide a common coordinate framework for cross-species comparisons.

View Article and Find Full Text PDF

We have developed and integrated several technologies including whole-organ imaging and software development to support an initial precise 3D neuroanatomical mapping and molecular phenotyping of the intracardiac nervous system (ICN). While qualitative and gross anatomical descriptions of the anatomy of the ICN have each been pursued, we here bring forth a comprehensive atlas of the entire rat ICN at single-cell resolution. Our work precisely integrates anatomical and molecular data in the 3D digitally reconstructed whole heart with resolution at the micron scale.

View Article and Find Full Text PDF

Optical and electron microscopy have made tremendous inroads toward understanding the complexity of the brain. However, optical microscopy offers insufficient resolution to reveal subcellular details, and electron microscopy lacks the throughput and molecular contrast to visualize specific molecular constituents over millimeter-scale or larger dimensions. We combined expansion microscopy and lattice light-sheet microscopy to image the nanoscale spatial relationships between proteins across the thickness of the mouse cortex or the entire brain.

View Article and Find Full Text PDF

Identification and delineation of brain regions in histologic mouse brain sections is especially pivotal for many neurogenomics, transcriptomics, proteomics, and connectomics studies, yet this process is prone to observer error and bias. Here we present a novel brain navigation system, named NeuroInfo, whose general principle is similar to that of a global positioning system (GPS) in a car. NeuroInfo automatically navigates an investigator through the complex microscopic anatomy of histologic sections of mouse brains (thereafter: "experimental mouse brain sections").

View Article and Find Full Text PDF

Much concern exists over the role of blast-induced traumatic brain injury (TBI) in the chronic cognitive and mental health problems that develop in veterans and active duty military personnel. The brain vasculature is particularly sensitive to blast injury. The aim of this study was to characterize the evolving molecular and histologic alterations in the neurovascular unit induced by three repetitive low-energy blast exposures (3 × 74.

View Article and Find Full Text PDF

Background: Successful disease-modifying therapy for Huntington's disease (HD) will require therapeutic intervention early in the pathogenic process. Achieving this goal requires identifying phenotypes that are proximal to the HTT CAG repeat expansion.

Objective: To use Htt CAG knock-in mice, precise genetic replicas of the HTT mutation in patients, as models to study proximal disease events.

View Article and Find Full Text PDF

Determining the density and morphology of dendritic spines is of high biological significance given the role of spines in synaptic plasticity and in neurodegenerative and neuropsychiatric disorders. Precise quantification of spines in three dimensions (3D) is essential for understanding the structural determinants of normal and pathological neuronal function. However, this quantification has been restricted to time- and labor-intensive methods such as electron microscopy and manual counting, which have limited throughput and are impractical for studies of large samples.

View Article and Find Full Text PDF

The behavior of the well-characterized nematode, Caenorhabditis elegans (C. elegans), is often used to study the neurologic control of sensory and motor systems in models of health and neurodegenerative disease. To advance the quantification of behaviors to match the progress made in the breakthroughs of genetics, RNA, proteins, and neuronal circuitry, analysis must be able to extract subtle changes in worm locomotion across a population.

View Article and Find Full Text PDF

As image data from a single neuroanatomical study can easily exceed tens of gigabytes, managing, analyzing, and presenting it is not trivial. Careful planning along multiple axes is required and includes the following: (1) Organizational methods developed for images should allow for easy and efficient access, selection, and potential reorganization of images. (2) Experimental information and other metadata should be readily available and accompany image data.

View Article and Find Full Text PDF

Stereologic cell counting has had a major impact on the field of neuroscience. A major bottleneck in stereologic cell counting is that the user must manually decide whether or not each cell is counted according to three-dimensional (3D) stereologic counting rules by visual inspection within hundreds of microscopic fields-of-view per investigated brain or brain region. Reliance on visual inspection forces stereologic cell counting to be very labor-intensive and time-consuming, and is the main reason why biased, non-stereologic two-dimensional (2D) "cell counting" approaches have remained in widespread use.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3dul5l5a0td0updtne6j2cugubb25v46): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once